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GENERAL INTRODUCTION 

The principal topic of this dissertation is the development and 

application of signal and image processing to Nondestructive Evaluation 

(NDE) and radio astronomy. Given NDE radiographic images and radio 

astronomy interferometer data (or images), some common demands are: 

noisy data are required to be analyzed and filtered, weak features are 

needed to be enhanced and detected, blurred details are wanted to be 

reconstructed and restored. In this work, some algorithms and 

techniques are proposed and developed for these needs. 

The dissertation consists of nine parts which are related to nine 

papers published or submitted for publication. Each of them has a 

specific and unique topic related to signal processing or image 

processing in NDE or radio astronomy. These topics are: 

interferometer data analysis and time series modeling; industrial NDE 

X-ray radiographic image analysis and feature extraction; adaptive and 

edge preserving filtering for NDE images; image segmentation by a rule 

based expert system; NDE X-ray image enhancement by Kalman filtering; 

deblurring NDE X-ray and infrared images by maximum entropy 

deconvolution; local feature enhancement for radio astronomy images; 

and a new technique for interferometer phase data correction. 

Data analysis and time series modeling of phase data from the Very 

Large Array (VLA) (operated by NRAO^) are introduced in Part I (J. P. 

^The National Radio Astronomy Observatory is operated by 
Associated University Inc., under contract with the National Science 
Foundation. 
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Basart and Y. Zheng. 1986. Modeling very large array phase data by 

the Box-Jenkins method. Radio Science, 21: 863-881). Phase 

fluctuations caused by atmospheric disturbance place a limitation on 

the quality of radio astronomy images made by interferometers. As the 

baselines and observation frequency increase, phase variation 

erratically increases. Phase errors produce blurred and noisy images 

of sources observed. Many studies have been made of the behavior of 

the atmospheric phase fluctuation. We found that the phase fluctuation 

is correlated in time and that it can be described by time series ARIMA 

models. ARIMA models of the phase variation provide good short-term 

forecasting of the phase in time. 

The factors degrading the quality of the NDE X-ray radiographic 

images are analyzed in Part II (Y. Zheng and J. P. Basart. 1988. 

Image analysis, feature extraction, and various applied enhancement 

methods for NDE X-ray images. In D. 0. Thompson and D. E. Chimenti, 

eds. Review of Progress in Quantitative NDE, Vol. 7 (in press) Plenum 

Press, New York.). The analysis focuses on image contrast, 

unsharpness, and film graininess. Then, various enhancement techniques 

are applied to improve the quality of the images. They are: histogram 

equalization, background trend removal, median filter, sigma filter, 

adaptive smoothing filter, and the Kalman filter. Feature extraction 

was done by detecting flaws with image segmentation and by detecting 

flaw spatial activity with the modified masking function. 
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The application of the Kalman filter in NDE X-ray image 

enhancement is introduced in Part III (j. P. Basart, Y. Zheng and E. R. 

Doering. 1987. Application of adaptive regional Kalman filter to X-

ray images in NDE. 6: 767-772 in D. 0. Thompson and D, E. Chimenti, 

eds. Review of Progress in NDE. Plenum Press, New York.). Image 

segmentation was done to find wide-sense stationary regions of an 

image. The parameters of autoregressive models of image processes were 

estimated with a white noise model. A Kalman filter adapted to the 

local features was used to enhance the images. 

A rule-based expert system was developed for a robotic scheme to 

segment and enhance an image. It is introduced in Part IV (Y. Zheng 

and J. P. Basart. 1987. Automatic image segmentation, modeling and 

restoration with a rule-based expert system, pp. 421-425 in D. M. 

Etter, ed. Twentieth annual asilomar conference on signal, system, and 

computers. IEEE. Inc., New York.). A tree structure search algorithm 

was used. Knowledge is represented as the condition-action rules. 

Segmentation and noise variance estimation were realized by a set of 

condition-action rules. The whole enhancement procedure was governed 

by a set of control rules. 

A modeling and Kalman filtering scheme reducing signal dependent 

colored noise was developed for enhancing NDE X-ray radiographic 

images. It is given in Part V (Y. Zheng and J. P. Basart. 1988. NDE 

X-ray image modeling and adaptive filtering considering correlated 

noise. In D. 0. Thompson and D. E. Chimenti, eds. Review of Progress 
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in Quantitative NDE. Vol. 7 (in press) Plenum Press, New York.). In 

this work, a technique is developed to remove noise fluctuations caused 

by film-grain noise, quantum fluctuation, and film dirt on the images. 

Some knowledge of a radiographic X-ray image forming mechanism is 

employed to obtain AR representations for both image and noise 

processes. The models are transformed to state-space forms so that the 

Kalman filter can be used to separate processes and enhance an image. 

Computational problems of Kalman filtering VLA phase data are 

reported in Part VI (Y. Zheng and J. P. Basart. 1988. Kalman 

filtering VLA phase data with a supercomputer, pp. 141-148 in T. J. 

Cornwell ed. The Use of Supercomputers in Observational Astronomy. 

NRAO/AUI, Green Bank, WV). The computational analysis was done for the 

Kalman filter program. A comparison of performance was made for a 

DEC-10 computer and a CRAY X-MP/24 computer. Some optimization and 

vectorization methods were introduced. Statements supporting the 

purchase of a supercomputer by NRAO were made. 

Part VII introduces a practical maximum entropy method for 

deblurring NDE X-ray and infrared images (Y. Zheng and J. P. Basart. 

1987. Deblurring NDE X-ray images and infrared images by maximum 

entropy method, presented at the Twenty-First Annual Asilomar 

Conference on Signal, System, and Computers, Pacific Grove, CA.). A 

fast and practical MEM was studied and developed for NDE images. This 

MEM uses a Newton-Raphson approach to find a conditional extremum 

vector of the entropy equation subject to conditions enforced by 
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Lagrange multipliers. The consistency between the observed data and 

2 
the reconstructed data is measured by the X statistic. Only two FFTs 

are required in each iteration which are less than many other MEM 

methods. 

Part VIII represents an adaptive Kalman filter scheme for 

enhancing radio astronomy images (Y. Zheng and J. P. Basart. Local 

feature enhancement of synthetic radio images by adaptive Kalman 

filtering. In praparation for submital to Astronomical Journal for 

publication.). This technique focuses on local feature enhancement 

which is different than other radio astronomy image restoration 

methods. The enhancement is specially effective in the low signal to 

noise region where the intensity of source and noise are at the same 

order and one can not confidently defined a source structure. 

Part IX introduces a new technique for interferometer phase 

corrections (Zheng, Y., and J. P. Basart, and Y. S. Koh. T-

calibration: a new technique for correcting atmospheric-induced phase 

errors of a synthetic-aperture antenna array by time series modeling 

and Kalman filtering. In praparation for submital to Radio Science for 

publication). This new technique for estimating phase data by time 

series modeling and Kalman filtering is combined with other radio 

astronomy data processing algorithms such as CLEAN and calibration. 
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PART I. MODELING VERY LARGE ARRAY PHASE DATA BY THE BOX-JENKINS METHOD 
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ABSTRACT 

The quality of radio astronomical images made with an antenna 

array depends upon atmospheric behavior. As baselines and frequencies 

increase, phase variations become increasingly erratic. The phase 

fluctuations are time dependent and we found them to be correlated in 

time order in each baseline. We can represent these correlations by 

stochastic models. Models obtained by the Box-Jenkins method are 

referred to as autoregressive integrated moving average processes 

(ARIMA). ARIMA models of VLA (operated by NRAO^) phase provide good 

short-term predictions that may be useful for improving present 

calibration techniques. ARIMA models of VLA phase are data dependent 

and can be used in a variety of situations. A technique that works in 

all cases can be programmed into a software package such that modeling 

can be accomplished with no operator interactions. Another important 

application of ARIMA models involves the use of Kalman filtering to 

reduce the atmospheric effects when self-calibration does not work 

well. The performance of the Kalman filter critically depends upon the 

models of the processes. An ARIMA model of the phase fluctuation can 

be represented in a state space form as noise in the Kalman filter 

equations. 

2 
The National Radio Astronomy Observatory is operated by 

Associated Universities Inc., under contract with the National Science 
Foundation. 
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INTRODUCTION 

Atmospheric disturbances place a severe limit on the quality of 

maps made with high-resolution radio astronomy interferometers. 

Instruments such as the very large array (VLA) [Thompson et al., 1980; 

Napier et al., 1983] have reduced performance, especially at long 

baselines and high frequencies, when there is differential atmospheric 

behavior between antenna line-of-sight paths to the celestial radio 

source. The study of atmospheric disturbances and how to correct for 

them is a continuing process. 

It has long been known that atmospheric water vapor is a strong 

contributor to phase fluctuations in radio interferometers operating at 

centimeter wavelengths [Baars, 1967; Hinder, 1970; Wesseling et al., 

1974]. As radio interferometers increased in baseline length and in 

frequency of operation, the number of atmospheric studies increased. 

These are well represented by the following authors: Mathur et al. 

[1970], Hinder and Ryle [1971], Hargrave and Shaw [1978], Hamaker 

[1978], Dravskikh and Finkelstein [1979], Han [1980], Moran and Rosen 

[1981], and Armstrong and Sramek [1982]. 

Correcting the data for atmospheric phase changes is normally 

accomplished by two calibration procedures. The first procedure 

(empirical calibration) is to collect data periodically during the 

observation of a strong pointlike calibrator source located as near as 

possible (in an angular sense) to the unknown source. From the 

calibrator data, correction factors are determined and applied to the 
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unknown source data. Correction factors are often determined by either 

an interpolation between calibration points or by averaging several 

calibrator points together. Under reasonable atmospheric conditions 

this method accounts for most of the long-term amplitude and phase 

variations. It cannot be perfect because the calibrator source is 

observed at a different position and at a different time than the 

program source. 

The second calibration procedure involves a scheme to further 

calibrate the data by using only the program source data (no calibrator 

source data). This method is often called "self-calibration" [Readhead 

and Wilkinson, 1978; Schwab, 1980], The self-calibration method grew 

out of hybrid mapping techniques developed in VLBI by Rogers et al. 

[1974] and Readhead and Wilkinson [1978]. The fundamental concept 

behind the hybrid technique is that phase closure is free of 

instrumental and atmospheric effects. The concept of phase closure was 

discovered by Jennison [1958]. In Readhead and Wilkinson's scheme, for 

N antennas, N-1 estimates of the true phase are derived from an initial 

model for the first iteration or from CLEAN components on subsequent 

iterations. Then, all remaining phases are obtained by solving 

N(N-1)/2 closure phase relations. The CLEAN components are produced by 

the CLEAN deconvolution algorithm developed by Hogbom [Hogbom, 1974; 

1984; Schwarz, 1978; Clark, 1980; Cornwell, 1983]. The CLEAN algorithm 

is a very efficient method for eliminating the sidelobes in a 

synthesized radio image. The self-calibration developed by Schwab 
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finds correction factors (antenna gains) by minimizing the mean-square 

error between pseudo data generated with the CLEAN components and the 

actual data. This method is better than the hybrid technique since the 

solutions are obtained by an iterative nonlinear least-squares method 

based on the least squares principle. Schwab's method often produces 

very good improvement in the data calibration. This gives a lower 

residual noise level in maps and increases the dynamic range of maps 

limited by phase noise rather than by the noise temperatures of the 

receivers. The method works well when there is a point-like object in 

the field-of-view or if there is a good model of an extended source. 

With the successes mentioned above it is natural to turn next to 

improving calibration procedures for more severe atmospheric conditions 

such as those occurring for summer time water vapor, long baselines, 

and high microwave frequencies. 

One approach to this problem is to measure the atmospheric path 

length fluctuations along each antenna's line of sight with a microwave 

water vapor radiometer (WVR), and then find the differential path 

length change between every antenna pair. The difference can be used 

as a correction factor. This technique has had some success [Resch et 

al., 1984]. However, as pointed out by Resch et al., there is a 

problem to be resolved before the procedure can be used routinely. The 

atmospheric brightness is not perfectly related to path length with the 

present opacity algorithm. This may cause the prediction of the WVRs 

to fail under conditions of heavy clouds containing drops whose average 

size is comparable to a wavelength [Westwater and Guiraud, 1980]. 
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Since deterministic methods have difficulties, we are testing an 

alternate method. Our approach to this problem is to apply the theory 

of Kalman filtering [Kalman, 1960; Kalman and Bucy, 1961]. Since its 

inception the Kalman filter has been extensively used in both control 

systems and in signal-processing systems [Brown, 1983]. Okatan and 

Basart [1979] applied the Kalman filter to 26 MHz VLBI data on 950 km 

baseline and significantly reduced the phase fluctuations caused by the 

ionosphere. 

The primary feature of the Kalman filter that is useful to us is 

the mathematical formalism into which we can put all the information 

about the atmosphere, the radio telescope, and the stochastic nature of 

the signal and noise. The filter can distinguish between different 

stochastic processes (even if their spectra strongly overlap). It 

estimates the variables of interest in a recursive and optimal way. 

The primary limitations are the complexity of the mathematical 

formulation and the computation time. Another feature which may be 

useful in the calibration of very long baseline interferometry (VLBl) 

data is the recursive nature of the Kalman algorithm. 

Kalman filter theory is couched in state-variable theory which is 

the modern way to analyze control systems. To minimize computation 

time it is important to minimize the number of descriptors of the data 

and of the system. Hence, our approach is to use the simplest models 

that can do a productive job in calibration. 
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The success of the Kalman filter in reducing unwanted effects in 

data depends critically upon the models describing the data and the 

system. In a sense, the Kalman filter is "tuned" to a particular 

process of interest. If the filter is properly tuned by correct 

modeling, the results will be equal to or (hopefully) superior to 

conventional processing techniques. However, if the filter is 

improperly tuned by choosing incorrect models, the results can easily 

be worse than the original data. 

Because of the acute sensitivity of the Kalman procedure to the 

model, we must devote considerable time to studying the characteristics 

of the data in order to properly describe them. In this paper we will 

discuss the characteristics of noisy phase data collected with the VLA 

and how we represent the data by stochastic models. Since the effect 

of phase errors dominate the effect of amplitude errors in the type of 

data we are studying, we are concentrating our efforts on phase at this 

time. 

Data used in this study were collected by R. A. Sramek at the VLA 

in an ongoing program in which he regularly analyzes atmospheric 

disturbances (see, for example, Armstrong and Sramek [1982]). 

Typically, analysis procedures presented in the literature by various 

authors concentrated on the statistics of data gathered and combined 

over several observations. Since we are attempting to correct the data 

as a function of time, we have taken a different approach. Our studies 

have focused on the stochastic behavior of the time series of phases 
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over one observing run or fraction thereof. In this paper we report 

the statistical behavior of these time series and our procedure for 

modeling the series by the Box-Jenkins method [Box and Jenkins, 1976]. 

In a future paper we will report our procedure for placing the models 

into a Kalman filter algorithm and our method for reducing noise in the 

maps. 
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DATA CHARACTERISTICS 

Our overall approach in developing a new calibration procedure for 

badly corrupted data, has been to start with well behaved data which 

can be easily calibrated by current techniques and to then proceed to 

more complex data. We initially studied the characteristics of data 

whose phase change is at most a few tens of degrees over 1 or 2 hours. 

Later we studied phase data with larger fluctuations which are the type 

of data our procedure is intended to correct. 

The VLA data bases studied are listed in Table 1.1. Over 300 time 

series, each on a different geometrical baseline, were available in 

each data base. We studied a total of 184 time series in the eight 

data bases. Two IF channels were available for each antenna pair, but 

we only studied one of the pairs because the dominant atmospheric 

disturbances were the same on each IF channel. An antenna located near 

the center of the array was used as a phase reference in each time 

series. The rms values of the phase in the time series varied from a 

few degrees to over 40°. 

Figures 1.1, 1.2 and 1.3 illustrate time series for phase data 

with various amounts of fluctuation. The term "phase" as used here is 

the phase difference between the signals from two antennas. If all 

geometric aspects are properly accounted for, as assumed here, the 

ideal phase will be a constant since we have observed a point source. 

The deviations from a straight line are a measure of perturbations, 

such as caused by the atmosphere and the electronic system. 
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Table 1.1. VLA Data Analyzed 

Date Radio Source Configuration Wavelength, 

cm 

Record Length, 

min 

Average Time, 

sec 

Number of Series 

Analyzed 

Dec. 13. 1980 0316+161 A 6 204 60 22 

Dec. 17. 1980 1741-038 A 6 201 60 23 

Dec. 18, 1980 0316+161 A 6 206 60 21 

May 7. 1982 0316+161 A 6 204 60 24 

May 21, 1982 0316+161 A 6 207 60 23 

May 21, 1982 1741-038 A 6 207 60 24 

Nov. 13, 1982 0923+392 A 6 163 60 22 

Apr. 7, 1984 3C 84 G 2 115 50 25 

i 
i 
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40 

o 20 
at 

Time  (minutes )  

Figure 1.1. Time series of phases averaged to one-minute time 
intervals. Data were collected on May 21, 1982, on a 10.7 
km baseline at a wavelength of 6 cm. The mean is 9°, rms 
is 14°, and peak-to-peak change is 63° The radio source 
was 0316+161 

Time  (minutes )  

Figure 1.2. Phases measured on April 7, 1984. Integration time = 50 
s, baseline = 1.09 km, wavelength = 2 cm, mean = -66°, rms 
= 39°, peak-to-peak = 224, and the source was 3C 84 
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-15 
CL 

Ttmo (minutes) 

Figure 1,3. An example of a time series nonstationary in the mean. 
The data were collected on'May 21, 1982, on a 21.22 km 
baseline at a wavelength of 6 cm. The integration time = 
60 s. The mean = -32°, rms = 17°, and peak-to-peak = 61° 
The radio source was 1741-038 

Essentially all of the significant phase perturbations displayed 

in this paper are assumed due to the atmosphere. Figure 1.1 shows a 

relatively small variation which would be satisfactorily handled by the 

usual calibration procedures. The large fluctuations shown in Figure 

1.2 are typical of the fluctuations we are trying to correct. Figure 

1.3 illustrates a nonstationary time series. This type of large 

nonstationarity has appeared mainly in data with relatively slow 

fluctuations. We have defined a numerical quantity to help describe 

the type of variation in a time series. Variance describes the 

magnitude of the variations, but it does not describe how fast these 



www.manaraa.com

18 

variations occur. To describe the combination of large swings with the 

rate of variation we use the first difference, 

where ^|j(t) is the phase at time t for baseline ij and t-1 is one 

sampling time interval before t. Taking the expectation of the 

absolute value of d and calling it gives 

The faster the phase variation is, the larger is Aj. For Figures 1.1, 

2.1, and 3.1, Aj is 4.2°, 22.1°, and 1.9°, respectively. For the data 

sets we have studied, A^ varies from 4° to 24° for 2-cm wavelengths and 

from 2° to 8° for 6-cm wavelengths. Whereas the rms varies from 5° to 

42° for 2 cm and from 3° to 36° for 6 cm. There is not much difference 

between the maximum values of rms at the two wavelengths, but Aj is 

considerably more at 2 cm than at 6 cm. The ratio of the maximum Aj 

(24:8) is equal to the inverse of the wavelength, as we would expect. 

In the data sets we analyzed, 2-cm phase data varies much more rapidly 

than 6-cm data and the rms measurements do not obviously indicate this 

difference. 

As shown in Figure 1.3, the large rms values of 6-cm data are 

caused by the large drifts. These drifts are very slow, as the Aj 

show. Aj are related to the average phase change in each time 

interval. Ay are nearly constant and the largest difference in them 

d£j(t) = 0ij(t) - 0£j(t-l) (1.1) 

Aj = E[|dij(t)|] ( 1 . 2 )  
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does not exceed 3° in each 6-cm data set. On the other hand, the rms 

values of 6-cm data do not monotonically increase as the baselines 

increase. One possible interpretation is that these phase variations 

of 6-cm data may have significant contributions from system noise and 

instabilities in addition to the dominant atmospheric disturbances. 

Another possibility is that the cell sizes of the water vapor are much 

less than the longest baselines for our data sets. The mismatch 

between rms and real phase fluctuation is due to the nonstationarity of 

the phase time series. In this case, Ay gives a better measurement of 

atmospheric phase fluctuation. The square of the Aj values of 2-cm 

data vary approximately as baseline length to the 0.88 to 1.14 power. 

This range of power overlaps the low end of the power of the phase 

structure function found by Armstrong and Sramek [1982], and is a 

little less than the 5/3 power of the phase structure function for the 

Kolmogorov spectrum [ishimaru, 1978, p. 380]. The structure function 

can be written in the form 

D(b) = cj b*"2 (1.3) 

2 
where b is the baseline length and c^ is a constant. Armstrong and 

Sramek find a to lie in the range 3.1 to 3.8 for baseline lengths 

ranging from 1 to 10 km. This is consistent with the a for the short 

term temporal power spectrum of précipitai water vapor which ranges 

from 3.0 to 3.2 [Hogg et al., 1981]. 



www.manaraa.com

20 

Generally, phase variations increase with baseline since the 

atmosphere becomes more dissimilar between antennas. Phase plots for 

three baselines at 2-cm wavelength are shown in Figure 1.4. As we 

would expect, the longest baseline has the largest variations. Aj for 

these plots is 18.5°, 6.4°, and 2.8° for series A, B, and C, 

respectively. 

Figure 1.4. Time series for three baselines. Observation was on April 
7, 1984, with wavelength = 2 cm. The source was 3C 84. 
The baselines were 1.98 km for series A, 0.18 km for 
series B, and 0.09 km for series C. The mean values for 
the series are -83°, -159°, and -63°, respectively. The 
rms values are 43°, 16°, and 10°, respectively 

0 20 40 sa 60 100 

Time (minutes)  

Combining baseline and time information we can present the data in 

histogram form. Two sets are shown here in Figures 1.5 and 1.6. Since 

phase is relative and some reference must be chosen, the phases from 
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the various baselines were forced to agree at the beginning of the time 

series. The first 50 min of data for a 200-min run at 6-cm wavelength 

are shown in Figure 1.5. The mean is near zero for all baselines and 

the dispersion increases with baseline. The rms values vary from 2.6° 

at 0.48 km to 11.5° at 21.01 km. In Figure 1.6 we show the last 50 min 

of the 200-min run. The means are now deviating about zero and the 

dispersion has increased. The rms values vary from 2.9° at 0.48 km to 

15.7° at 21.01 km. The variation of the mean and rms with time 

indicate nonstationary properties of the phase. Although the means 

appear to be scattered in time, the relatively small phase fluctuations 

can be corrected by standard techniques. The phase variations of the 

data sets we have studied do not show a consistent behavior as a 

function of baseline on a short time basis for the 6-cm data sets. 

Roughly, the variation increases with baseline most of the time, but 

very often some intermediate baselines have less phase fluctuation than 

some of the shorter baselines. 

For large phase fluctuations at 2 cm, the behavior is different. 

The rms is large and nearly stationary. Histograms for a range of 

baselines are shown in Figure 1.7. This is for the first 25 min of the 

run. The shape of the histograms, as a function of baseline, for the 

last 25 min of the 115-min run are very similar to those for the first 

25 min (not shown). The mean changed systematically for all baselines 

by about 50° over the 115 min. 
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Figure 1.5. Time-space histograms of phase data. Each histogram 
contains the first 50 min of a 200-min run on the 
southeast arm of the VLA on May 21, 1982. Phases were set 
to zero at the beginning of the run. The wavelength was 6 
cm and the source was 0316+161 
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Figure 1.6. Time-space histograms for the last 50 min of the run 
described in Figure 1.5 



www.manaraa.com

23 

M 
m 29S 

I 494 

M 710 
H) 
c 
;2 971 
(U 
S 1265 
00 

1531 

1947 
-60 -30 0 30 60 

Phase (degrees)  

Figure 1.7. Time-space histograms for very noisy phase data. Each 
histogram contains 30 min of data collected on the 
southwest arm of the VLA on April 7, 1984. The wavelength 
was 2 cm and the source was 3C 84 

An example of a well-defined trend in phase fluctuation vs 

baseline is shown in Figure 1.8. The three curves with tick marks 

correspond to the three arms of the VLA. The curves follow a power law 

up to a baseline length of 2 km. A least squares fit to the three 

curves gives 

rms(b) = (1.510±0.005)bO'44*0.005 (1.4) 

where b is the baseline length in kilometers. The rms of the residuals 

is 5.70®. The exponent of b is similar to the exponent in the power 

law of Aj. The plot of (1.4) is given by the curve with no tick marks 

in Figure 1.8 and closely follows the data. 
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Figure 1.8. RMS plots of phase vs. baseline. N, W, and E refer to the 
north, southwest, and southeast arms of the VLA, 
respectively. The data were collected on April 7, 1984, 
while observing the radio source 3C 84 at 2cm 

Another routine function we used to analyze the behavior of phase 

in time order was the autocorrelation function. It plays a significant 

role in our method of modeling the time series. Figures 1.9 through 

1.12 illustrate the various types of autocorrelation functions for the 

various types of observed phase behavior. One of the most typical 

behaviors is shown in Figure 1.9 in which the autocorrelation slowly 

decreases to nearly zero. It is a Gauss-Markov process which can be 

modeled by the function 

R(T) = a^e (1.5) 

300 B00 sea 1200 1500 1800 

Basel ines  (meters)  
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The parameter values fitted to (1.5) are <?" - 1.00 and /3 = 0.141 ± 

0.0005. P was eliminated from the first 25 autocorrelation 

coefficients by a least-squares method. The rms of the residuals is 

0.0352. The solid line without dots in Figure 1.9 was generated from 

(1.5). Occasionally the autocorrelation appears as a pseudoperiodic 

function as shown in Figure 1.10. It can be modeled by 

R(r) = o^e ^^cosUgT (1.6) 

which is a periodic Gauss-Markov random process. The parameter values 

are = 1.00, 0 = 0.086 + 0.005 and = 27.88 + 0.005. j3 and were 

estimated from the first 22 autocorrelation coefficients by a least 

squares method. The rms of residuals is 0.0333. The solid line 

without dots in Figure 1.10 is a plot of (1.6). 

u ̂  

-0.5 
40 

Lag (minutes)  

Figure 1.9. An autocorrelation function typical of many time series of 
the VLA phase. The data are the same as that in Figure 
1 . 1  
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Figure 1.10. A pseudoperiodic autocorrelation function of the VLA 
data. The data were collected while observing source 
0316+161 on March 7, 1982, at 6-cm wavelength 

An example of phase variation that resembles white noise is shown 

in Figure 1.11. The rapid drop near zero lag and the subsequent near 

zero values indicate that the noise sequence is nearly uncorreiated. 

Its model is given by 

R(r) = Ô(t) + 0.3116(7-1) (1.7) 

The final example of autocorrelation functions is given in Figure 1.12. 

The very long decay is indicative of a nonstationary mean. The 

modeling process for this is discussed later. 
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Figure 1.11. An autocorrelation similar to an ideal delta function. 
The data are from the same database but a different 
baseline (0.76 km) described in Figure 1.2 

Lag (minutes)  

Figure 1.12. An autocorrelation function of a nonstationary time 
series 
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TIME-SERIES MODELS OF THE PHASE 

As shown in the previous section, atmospheric phase variation is 

correlated in time order. In this section we will show that the phase 

variation can be represented by a stochastic model. Consequently, our 

modeling of the VLA phase is oriented toward a time-series approach. 

This also is the order in which the data are collected. For mapping, 

the data must be reordered by spatial coordinates which scrambles the 

atmospheric information. Complete modeling would include spatial 

variation in addition to temporal variation. However, spatial 

variation has been omitted for simplicity. It is clear from sample 

studies that adjacent antennas have similar phase behavior, but this 

coupling is omitted also. Spatial variations and correlations between 

antennas will be considered in the future. The objectives of this 

modeling procedure are to (l) find difference equations to describe 

phase propagation error due to the atmosphere, (2) statistically test 

whether the models represent the stochastic aspects of the VLA phase 

data, (3) forecast atmospheric variation, and (4) determine the VLA 

phase models to be placed in Kalman filters to reduce phase errors. 

There are two ways to model a system: an internal description and 

an external description. The internal description is based on the 

knowledge of the internal structure of a system. The external 

description is based on the behavior of the input and output of a 

system. Limited by contemporary technology at the present time, a 

practical useful physical model of atmospheric variations based on the 
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knowledge of the internal structure of the atmosphere, cannot be built 

yet. The atmosphere is a "black box" in a sense. Clearly, what we can 

do is extract descriptive properties of the atmospheric phase 

disturbance from observations. Then we build models that adequately 

describe the time variation of the phase. 

In the previous section, samples of data and models for the data 

were given. The four samples required four different models whose 

mathematical forms were obtained by inspection. If one is to automate 

the modeling in a computer, it is desirable to minimize human 

interaction. That is, one should not have to manually study the 

autocorrelation of each series and then tell the computer what model to 

use. A procedure is required which is capable of satisfactorily 

modeling as many different types of phase behavior as feasible. The 

procedure we have chosen which has proven to be satisfactory thus far 

is Box-Jenkins time series analysis. We will give a brief description 

of it here before discussing our models of the VLA phase data. For 

more details, the reader is referred to the texts by Pankratz [1983], 

Anderson [1976], McCleary and Hay [1980], and the master text by Box 

and Jenkins [1976]. Three other useful references with many 

applications are Anderson [1982a, b, 1983]. 

The idea behind the Box-Jenkins approach is that a measured point 

in a time series may be statistically related to other measured points 

in the series, and the goal in the Box-Jenkins analysis is to find a 

good way of stating this statistical relationship. Thus, the Box-
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Jenkins approach is based on modeling the correlation structures. A 

variety of ARIMA models obtained by the Box-Jenkins approach implies a 

variety of different correlation structures [Pankratz, 1983]. The 

major tools in the Box-Jenkins approach are autocorrelation functions 

(ACF) and partial autocorrelation functions (PACF). The model 

estimation is often based on a nonlinear least squares (NLS) procedure. 

Compared with other traditional time-series analyses, the Box-Jenkins 

approach has three advantages: 

1. The concepts associated with ARIMA models are derived from a 

solid foundation of classical probability theory and 

mathematical statistics. Many other methods are derived in 

an intuitive way. 

2. ARIMA models are a family of models. According to a certain 

strategy, one or more appropriate models can be selected out 

of this family. 

3. An appropriate ARIMA model produces optimal predictions 

which have a small mean-squared forecast error. 

The Box-Jenkins method consists of three main steps: 

identification, estimation, and diagnostic checking. Identification is 

the process of choosing the functional form of a model. Estimation is 

the process of determining the parameters of the model, and diagnostic 

checking is the testing of the model against the data to see if the 

residuals are "white" and uncorrelated. If the test results are not 

satisfactory, the entire procedure is repeated. 
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Model identification for a stationary time series starts with 

finding the autocorrelation and partial autocorrelation coefficients, 

Normalized autocorrelation coefficients are given by the standard 

formula 

N-k 
Z (z^  -  z) (z t+k -  z )  

( 1 . 8 )  

Z (ZT - Z)^ 
t=l 

where N is the number of points in the sample series, is a sample at 

time t, and z is the average value of the series. Partial 

autocorrelation coefficients are found recursively using 

PLL = RJ (1.9) 

and 

k-1 

Pk-l,j ̂ k-j 
J=1 

Pkk (1.10) 
k-1 

1 - Pk-l,j --j 
J=1 

where 
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Pkj Pk-l,j ~ PkkPk-l,k-j 

k = 2,3,... 

j = l,2,...,k-l 

The estimated ACF and PACF are measurements of statistical 

relationships within a data series. ACF measures the joint probability 

distribution of pairs of values of the time series, separated 

by a constant interval or lag k. PACF measures the relation of 

(zj.,z^+j^) taking into account the effect of pairs of (zt+l»^t+k^' 

(zj-+2 ... (zt+k_i,zt+k)' PACF exploits the fact that where an 

AR(p) (auto-regressive process of order p) process has an ACF infinite 

in extent, it can be described in terms of p nonzero coefficients of 

the ACF. For an AR(p), the coefficients of PACF will be non-zero for k 

less than or equal to p and zero for k greater than p. The estimated 

ACF and PACF are guides in choosing one or more ARIMA models that seem 

appropriate. The basic idea is: every ARIMA model has a unique 

theoretical ACF and PACF associated with it. At the identification 

stage we compare the estimated ÀCF and PACF calculated from the data 

with various theoretical ACFs and PACFs. The model, whose theoretical 

ACF and PACF most closely resemble the estimated ACF and PACF of the 

data, will be chosen as a candidate model. The general form of ARIMA 

models can be represented by the autoregressive process 

z^ = C + d^Zt-1 ^2^t-2 "*• ••• + (1.11) 

and the moving average process 
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zt = C - ôia^-i - 02®t-2 ~ ••• (1.12) 

where is the current data point, C is a constant, and the ^'s and 

ff's are unknown coefficients to be found at the estimation stage. The 

noise term a^ is often called a random shock. It also is a residual of 

the fit of the equation to the time series. These representations for 

the current data point are written in terms of the previous data points 

in the former case, and in terms of the previous random shocks in the 

latter case. 

A more general representation for these series is given by 

*(B) (1-6)^2% = E(B)AT (1.13) 

where B is the backward shift operator defined by BZJ. = ^t-l ^t 

- z. ^(b) and 0(B) are functions of B and defined by 

(̂B) = 1 - - 02®̂  - ... - 0pB̂  

and 

9(b) = i - e^b - ogb^ - ... - ogb^ 

The d power of (1-B) in (1.13) arises because many time series are not 

stationary in the mean. Taking the first or second difference of the 

series usually makes the series stationary. The value of d is the 

order of the difference required to make the series stationary in the 

mean. The notation ARIMA(p,d,q) represents the order of the process. 
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Before a time series can be modeled by an ARIMA process, it must 

meet several requirements. The data should be (1) sampled at equally 

spaced time intervals, (2) autocorrelated and (3) stationary in 

variance and in the mean. Additionally, for N data points, the maximum 

order of a model lies in the range N/4 ~ N/3. If requirement one is 

not met, the data must be resampled at equal intervals. If the data are 

uncorrelated, the process is white noise which would be characterized 

by its variance. If the series is not stationary in the mean, one or 

more differences must be taken. Usually one is enough in our 

situation. If the series is not stationary in variance, a nonlinear 

transformation must be made on the series. The selection of a 

transformation function is difficult to automate. However, in many 

cases the problem can be avoided by dividing the original series into 

one or more series, each of which is nearly stationary in variance. 

The modeling process starts with a uniformly spaced stationary 

time series. The ACF and PACF are calculated. From these one can 

determine the form of the model to choose. An example of data that 

easily fit the Box-Jenkins modeling procedure is shown in Figures 1.13 

and 1.14. The time series for this data is shown in Figure 1.2. This 

is an AR(1) process (autoregressive series with depending upon z^-i 

only). This information is conveyed by the exponential decay of the 

ACF and the one spike in the PACF. The threshold of significance is 

represented by the dashed lines in the figures representing a t-test 

value of 1.96. An AR(2) process would have an exponentially decaying 
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Figure 1.13. Autocorrelation of the time series shown in Figure 1.2. 
The dashed line represents a level of significance given 
by a t-test value of 1.96 
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Figure 1.14. Partial autocorrelation of the time series shown in 
Figure 2. The dashed line represents a level of 
significance given for a t-test value of 1.96 
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ACF and two significant spikes in the PACF and so on for higher 

order AR processes. With a suggested model in this case of 

Zt = C + "Aizt-l (1.14) 

we next must find and C. The estimation of the parameter, 0]^, is 

carried out on the computer with a maximum likelihood (ML) or least 

squares (LS) approach [Box and Jenkins, 1976]. Since the likelihood 

function from which ML estimates are derived reflects all useful 

information about the parameters contained in the data, the results of 

the ML approach have attractive statistical properties. However, the 

computation of the ML approach is cumbersome and requires a lot of 

computer time. On the other hand, if the a^ are normally distributed, 

then LS estimations are either exactly or very nearly ML estimates [Box 

and Jenkins, 1976]. Then, LS is recommended in practice. Since the 

set of equations generated by minimizing the sum of squared residuals 

is nonlinear, the LS estimates of an ARIMA model require the use of a 

nonlinear least squares (NLS) method. The method which we used is 

called "Marquardt's compromise" [Marquardt, 1963; Box and Jenkins, 

1976]. Marquardt's method is a combination of two NLS procedures: 

Gauss-Newton linearization and the gradient method [Pankratz, 1983]. It 

combines the advantages of these two approaches which not only converge 

to NLS estimates but also converges relatively quickly. The basic idea 

of Marquardt's approach is that starting with some initial values for 

the parameters of an ARIMA model, it finds new parameters which produce 

a smaller sum of squared residuals in a systematic way. 
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For a general ARIMA (p,0,q) process describing a stationary time 

series with N samples, we can estimate the ARIMA coefficients with the 

following procedure (slightly modified and outlined from Box and 

Jenkins [1976]. The threshold values are ours.) 1. Find initial 

values of the AR parameters, called #^0' ^7 solving the Yule-Walker 

equation 

-1  

•Î^IO Cq c|g-l| ' •• c|q-p+l| Cq+1 

9^20 

= 

c|q+l| Cq . '• C|g-p+2| Cq+2 

^pO _ c|q+p-l1 c|q+p-2| • Cq Cq+p 

where {c^: k=0, 1, p+q} is an autocovariance sequence of the 

phase series and k=l, 2, ..., p} is a set of solutions of the 

initial parameters of the AR process. 

2. Find initial values of MA parameters {9%^: k=l, 2, ..., q} 

with the Newton-Raphson algorithm which calculates a dummy vector 

at the (i+l)st iteration from the values of at the ith iteration: 

Xi+i = Xi - TÏ^Fi (1.16) 

where 

X "" (xQ ; Xj J • • • ) Xg ) 
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A 
c] = 2 Z ^kO C|j+i-k| for p > 0 and ^qO = 

1=0 k=0 

= Cj for p = 0 

Cj = autocovariance of the phase time series 

j = 0, 1, ..., q for all p 

g-j 

£j. - Z xixi+j - c} 
1=0 

= (fg, fi fq) 

T = 

XQ xi 

XI X2 

X, 

X, 

XQ Xj 

^0 • *q-l 

^̂ 0 

1  /2  
with starting values xg = (c^,) , xj = *2 = ... = Xg = 0 until |fj| < 

-4 
eg. j = 0, 1, q, for a given threshold value eg = 5x10 . The 

maximum number of iterations we used is 16. Then the parameters are 

given by 

^jO = -Xj/XQ (1.17) 
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Generally speaking, the parameters estimated from step 1 and step 

2 are good approximations of the results of an iterative NLS method if 

the model contains all <l>^ terms between <t>-^ and and terms between 

and 0q. If a model does not contain all terms between and <t>ç 

and all 6 terms between 9^ and 6p, Marquardt's method is used to 

estimate the and 9j. Marquardt's procedure is the following: 

3. Find initial residuals with initial parameters found in step a 

and step 2 using 

p q 
a^ = (zf-z) - ( Z - Z e.-a*.:) (1.18) 
t t i=l ' t 1 j=i J t J 

where t = Ng+1, Ng+2 N and Nq and max(p,q) and initial sura of 

square residuals 

N , 
SSRq = Z at (1.19) 

t=No 

and the initial is found with (1.15), and the initial 9j is found 

with (1.17). 

4. Find the numerical values of 

9at 
y; 4- = ( 1.20) 

9/3i 

by 
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gk)]/(2Ai) 

where = 0.02 and 0 = (jSj, <32, ..., Pj^) = ((f>i, <i>2, ••• , <Pp, , 

02» Oq) starting with Pg ° ̂̂ 10» ^20' •••' ^kO ^ ̂ '^10» ^20» •*• » ^pO' 

^10' ^20» "•• ' dqo)' 

5. Form linearized equations 

A H = G (1.21) 

where A is a k x k matrix A = {A^j} 

N N , N , 
Aij = ( 2 yi,tyj,t) / [( z /i.t) (z Yj.t)] 

t=Nn t=Nn t=Nn 

A££ = 1 + rr 

and initially TT = 0.0001; 

G is a k X 1 vector 

G' = (gi , g2 , 6k ) 

N N / 
Si - ( z yi,t*t)/( z yi,t) ; 

t=No t=No 

H is a k X 1 vector 

H' - (h^, h2, ..., h^). 
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Solve (1.21) for H and then obtain the correction factor for /?£ 

from 

APj -  h;/(Z yf  
t-No •' 

Then the new parameters are 

4 = #Q + Ag 

where A/Î = A(32, Ap^) 

6.  Find new sum of the squared residuals SSRq by (1 .18)  and 

(1 .19) .  

7. For the case of SSR^ > SSRq, increase the parameter by a 

factor 10 and then return to step 5. 

8.  For the case of SSRj < SSRq, if some lA/S^I > where = 

0.0001, decrease t t  by a factor 10 and return to step 3 with SSRq =SSRi 

and pq = q. If all lA/3^1 < , then the estimation is done. The final 

results of the elements in 0 are the desired ^ and 6 coefficients. The 

maximum number of iterations of the loop through steps 5 to h is set to 

25. 

9.  Finally, find the constant term by 

P 
C = (l - Z 0£)z 

i=l 
( 1 . 2 2 )  
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Using the method described above, parameter <t>-^ of equation (14) 

was estimated as 0.74. Since this estimate had a small standard error 

of 0.058 and a significant t-test value of 12.84, the estimate was 

good. The constant C was then found using equation (22). The 

estimated mean value and standard deviation of the residual a^. are 

-0.0778 and 26.0, respectively. The hypothesized expression of 

equation (1.14) representing the series becomes 

ZT = -17.3 + 0.739 ZT-I + A^ (1.23) 

The next step is the diagnostic check to see if (1.23) does indeed 

represent the process. Equation (1.23) is used without the a^ term to 

estimate a series which is subtracted point-by-point from the data to 

obtain a residual series (represented by (1.18)). This residual series 

is the set of a^ (random shocks). The most important characteristics 

of the residuals are that they are uncorrelated and normally 

distributed. To determine this we find the ACF of the residuals. This 

is shown in Figure 1.15. For all lags greater than zero the ACF points 

are insignificant (t values < 1.96 = dashed line). A chi-square 

goodness of fit test for normality of the residuals with five degrees 

of freedom gives 2.4 which is less than 11.1 (for a level of 

significance of 5%) which indicates the residuals have a normal 

distribution. We conclude that the model is good. 
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Figure 1.15. Autocorrelation of the residuals after a model was 
subtracted from the time series in Figure 1.2 

We have modeled a wide variety of phase time series to see if the 

Box-Jenkins method can handle all of the various types of phase 

corruptions one would expect in the VLA data. We assume the equipment 

is working and have not considered things such as phase jumps caused by 

the local oscillator going out of lock. Several examples of modeling 

will be given illustrating the variety of data we have studied. 

If the modeling process is satisfactory, we can test it further by 

predicting the phase behavior for future time. In the tests shown we 

have included the prediction at the end of the series but have omitted 

all intermediate details. Figures 1.16 and 1.17 show predictions at 

two different times for the same time series. In Figure 1.16 a model 

was built based on the first 80 min of data. The model is an 
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autoregressive moving average series with a first difference of the 

data: 

zt = 0.7451 zt_i + 0.5971 2^-2 " 0.1180 - 0.2242 2^-4 

- 0.6318 zt_7 + 0.6318 z^.g + 0.2729 a^-i - 0.8568 at_2 

- 0.6211 aj._3 - 0.5808 3^-7 (1.24) 

Because the time series is nonstationary and the first difference was 

taken, there is no constant term C in the model. The model was used to 

make a pure prediction of the next 40 data points. The prediction is 

shown by the dashed line in Figure 1.16. A pure prediction of 40 

points is far too long for a realistic prediction. However, by showing 

40 points, the reader can see when the prediction starts to fail. In 

this case the prediction follows the actual data (shown by the solid 

line) reasonably well for about 9 points. 

p) 
c 
V C O) 
t) •o 

60 
o 
w fO 
£ 

100 120 80 60 40 

Time (5 /G minutes)  
20 

Figure 1.16. Forty-point pure prediction (dashed line) starting at 
point 80. The solid line is the data. The data were 
observed on April 7, 1984, with a wavelength of 2 cm on a 
1.95-km baseline. The radio source was 3C 84 
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To illustrate another prediction with the same data, Figure 1.17 

shows a pure prediction for 40 data points (dashed line) with a model 

based on the first 98 points. The prediction is good for about 10 

points. The model for this prediction is different than (1.24) but 

contains the same number of terms. Of course, one can build a model 

with fewer terras, but in a case like this it may not represent the data 

well. This is shown by the prediction (dashed line) in Figure 1.18.  

The model is an AR(2). Comparing Figures 1.18 and 1.16 we see that the 

prediction in Figure 1.18 is inferior to that in Figure 1.16. The 

dash-dot lines in Figure 1,18 correspond to the 95% confidence interval 

for the prediction. Note that the prediction in Figure 1.18 quickly 

goes to the average, which is the best prediction when the known 

information is small. 

180 

•o 

a.  

40 60 80 180 120 

Time (5 /6  minutes)  

Figure 1.17.  A pure prediction starting at point 98 (dashed line) of 
the same data as in Figure 1.16. The two dash-dot lines 
are the 95% confidence limits. The solid line is the 
data 
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Figure 1.18. A pure prediction starting at point 80 using a simple 
AR(2) model. The line legend is the same as in Figure 
1.17 

Data of a more cyclical nature are shown in Figure 1.19. The 

model was built from the first 60 points and is 

= -2.041 + 1.6360 - 0.8738 z^_2 

- 0.5488 at_i + a^ (1.25) 

The model was used to predict the next 50 data points. The agreement 

with the actual data is good the first 17 points or so. The amplitude 

of the variation slowly decreases to the mean. The 95% confidence 

limits (dash-dot) lines encompass the actual data throughout the 50-

point prediction. Another example of cyclical data is shown in Figure 

20. We started the prediction at point 95 on a large swing of the data 

and continued for 50 points. The prediction follows the data remarkably 

well for about 20 points and then quickly converges to the mean. In 
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this case data do not deviate very much from the mean so the prediction 

is useful for a longer time period than we would normally expect. 

O) 
u 

-28 

28 88 108 

Time (minutes)  

Figure 1.19. A 50-step pure prediction starting at point 60 of data 
with a cyclical behavior. The data were observed on 
March 7, 1982, at a wavelength of 6 cm. The radio source 
was 0316+161. The line legend is the same as in Figure 
1.17 
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Figure 1.20. A 50-step pure prediction starting at point 95 of data 
observed on March 7, 1982, at a wavelength of 6 cm. The 
line legend is the same as in Figure 1.17 
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DISCUSSION 

In the previous section, we discussed the procedure of finding 

stochastic models for VLA phase fluctuations. This procedure, often 

referred to as Box-Jenkins time series analysis, has four steps: (l) 

data preprocessing; (2) model identification; (3) parameter estimation; 

(4) model verification. The completeness of this procedure is 

necessary for obtaining a good model for a VLA phase time series. 

Most of VLA phase time series are nonstationary. This 

nonstationarity shown in recorded data is due to the nonstationarity of 

random atmospheric variations. Phase data obtained with long geometric 

baselines show especially high nonstationarity. In this case, data 

differences or some nonlinear data transformations are needed to 

transform data series into approximately variance stationary series. 

The first difference was often taken for those data sampled at long 

baselines. Another useful and simple method is to segment the data 

series such that each segment is approximately variance stationary. 

From the results of our data analysis, we often had to create segments 

of about 50 to 70 min for long geometric baseline data. We found that 

the phase fluctuations of short baselines were well centrally 

distributed with small scatter and close to variance stationary. 

Consequently, the data differencing and segmentation were not often 

performed for the short-geometric-baseline data (such as baseline 

length < 2 km) even though the data were obtained with a high observing 

frequency and had large fluctuations. The variance stationarity of 

modeled data is very important for obtaining good predictions. 
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An ARIMA model of a-VLA phase time series is data dependent. A 

variety of phase fluctuation types can be represented by a variety of 

ARIMA models based on intrinsic correlations existing in phase data. 

The results of modeling several VLA phase data sets have shown that 

most VLA phase series whose lengths are less than 120 minutes can be 

modeled by an ARIMA (p,l,0) process where p < 3 or an ARIMA (p,l,q) 

process where p < 2 and q = 1. A high order p of a model is helpful 

for longterm pure predictions of VLA phase fluctuations. Since MA 

terms quickly become negligible in a pure prediction procedure, a high 

order q is not recommended for constructing a model by which long-term 

predictions are derived. As the results show, a model with a high 

order of p produces better predictions than a model with a low order of 

p. However, the residuals generated from both models are very similar. 

Then, if we employ both small residual criteria and good predictions to 

judge a model, most VLA phase time series which we studied could be 

modeled by an ARIMA (p,l,q) process where p < 7 and q < 1. This 

result is matched to the atmospheric variation which changes on a time 

scale of a few minutes if the sampling average varies from 30 s to 1 

min. 

In the estimation step for an ARIMA model, if the number of 

estimated parameters is small such as < 8, we often avoided solving the 

Yule-Walker equation and the Newton-Raphson algorithm for initial 

values of 4»^ and 9^, We assumed that all initial values were 0.1 and 

then applied Marquardt's method to obtain estimates of <l>^ and 6^. The 
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number of iterations for convergence often lies between 10 and 25. On 

the other hand, for an AR(p) process which requires all terms 

between and i^p, the method of solving the Yule-Walker equation was 

used to estimate The results were very similar to those of 

Marquardt's method. When all intermediate coefficients are needed, 

solving the Yule-Walker equation is faster than Marquardt's method and 

'easy to program. 

The rms value of residuals generated by a model not only depends 

on the model, but also on the whiteness (uncorrelated) level of the 

phase data series. Those data obtained with either very short 

baselines or very long baselines with high observing frequencies 

usually have a high whiteness level. Then the rms values of residuals 

for these data modeled are relatively high. They may be close to, or 

over, 2/3 of the rms value of the data series. The rms value of 

residuals of 2-cm data are often relatively higher than those of 6-cm 

data. In the general case, if the phase variation is large, such as 

30° rms, the residuals of the model can be reduced to about 15° to 20° 

rms, and good short term predictions can be made for 5 to 6 min before 

they deteriorate. For phase variations of around 10° rms, the 

residuals are reduced to about 4° to 5° rms. Pure predictions are 

typically good for 10 min or more. 

Since our results show that ARIMA models of VLA phase fluctuations 

often provide good short-term predictions (some times for long-term 

predictions also), this modeling procedure may give good extrapolation 

or interpolation to help the empirical calibration. 
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The most important use of the models for us at this time is to put 

them into a Kalman filter. The time series modeling effectively 

separates the VLA phase variations in two components. One component is 

a nonwhite stochastic process represented by an ARIMA (p,d,q) model. 

The second component is white noise represented by the variance. The 

knowledge about these two components is necessary for applying the 

Kalman filter technique to improve radio images. An ARIMA model is a 

difference equation. Its Z transform, frequency response, and state-

space form can be easily obtained. Then, many signal processing 

techniques can be used for further analysis and improvement. 

Currently, we are developing a technique for filtering data that is 

badly corrupted by atmospheric disturbances and testing the synthetic 

maps against the maps made by standard techniques. 
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PART II. IMAGE ANALYSIS, FEATURE EXTRACTION, AND VARIOUS APPLIED 

ENHANCEMENT METHODS FOR NDE X-RAY IMAGES 
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This work introduces the main features of a relatively complete 

procedure for NDE X-ray image processing. The procedures include image 

analysis, feature extraction, and image enhancement. Image analysis 

uses information of image statistics and image contents. Image feature 

extraction includes an image transformation, an image segmentation 

using a split and merge method, and edge detection by the masking 

function. Image enhancement techniques are evaluated for a low pass 

filter, sigma filter, median filter, adaptive variance filter, and the 

Kalman filter for different application situations. Many examples are 

given to illustrate different techniques. 
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INTRODUCTION 

As one of the "big five" NDE methods, radiography has been widely 

applied in industrial inspection procedures to detect flaws with a wide 

range of attainable flaw sensitivities [Halmshaw, 1982]. As one of the 

radiographic methods, X-ray radiography for NDE has been steadily 

developed for more than 40 years and is now well established. However, 

quality of an X-ray image is limited by intrinsic characteristics of a 

radiographic image forming mechanism [Halmshaw, 1982; Halmshaw, 1973; 

Herz, 1969]. The limitations cause difficulties in defining a fine 

structure of a specimen and to detect a weak flaw in a low contrast 

radiograph. 

The objective of this work is to introduce a general procedure to 

enhance a low-contrast radiographic X-ray image and evaluate flaws in 

the image. This procedure includes image analysis, image enhancement, 

and image feature extraction. In this procedure, contents of a 

radiographic image are analyzed to determine a proper method for 

enhancing this specific image, and a feature extraction method is 

chosen to detect flaws. 

Image analysis focuses on three factors: image contrast, unsharp 

ness, and film graininess. Various enhancement techniques proposed to 

improve these factors include the median filter, sigma filter, adaptive 

smoothing filter, Kalman filter, histogram equalization, and background 

trend removal. Although blurring is mentioned here, its solution is 

not included at this time. Feature extraction methods applied include 
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flaw spatial activity detection by the masking function, and flaw 

detection by image segmentation. 
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X-RAY RADIOGRAPHIC IMAGE ANALYSIS 

X-rays are electromagnetic radiations with wavelengths roughly in 

-10 -7 
the range of 10 to 10 cm which are shorter than those of visible 

light and ultraviolet. X-rays are generated by accelerating a high 

voltage beam of electrons onto a metal target. Because of their 

penetrating property, X-rays are widely used in industrial inspection. 

Three fundamental parameters of a radiographic image: contrast, 

unsharpness, and film graininess [Halmshaw, 1982] are briefly analyzed 

with methods proposed to improve each of them. 

Image Contrast 

Image contrast is defined by the density difference between the 

image of a slit and the background given by a uniformly thick specimen. 

Whether the slit is discernible depends on the amount of the 

difference. The shallower the discernible slit is, the higher the 

image contrast must be. Hence the contrast is related to the ability 

to detect a minimum thickness change in a specimen. Assuming that the 

smallest observable thickness change is Ax in a specimen of thickness 

X, the contrast sensitivity is defined as [Halmshaw, 1982] 

Ax 2.3 AD[l+(lg/lD)] 
— 100  100% (2 .1 )  
X MGjjX 

where AD = film density change due to the thickness change Ax, Ig = 

intensity due to scattered radiation, Iq = intensity of the direct 
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radiation, M = linear absorption coefficient of the exponential 

absorption [Halmshaw, 1982], and Gg slope constant of the linear region 

of a film characteristic curve D-logE [Halmshaw, 1982]. To obtain a 

high contrast image, high-contrast film having a high sensitivity and 

fine graininess should be used, and an X-ray radiation with a proper 

energy should be adjusted. 

For a specimen with a fixed x, the attainable thickness 

sensitivity can be improved by reducing the effect of Ig/lg in equation 

(2.1) by removing the scattered radiation. If the scattering effect 

appears with an additional uniform intensity, it can be reduced by 

removing the background and properly expanding the image's dynamic 

range. If the scattering effect causes a random fluctuation, it can be 

reduced by a proper filtering procedure. AD has a value between 0.006 

and 0.01 Depending on viewing conditions [Halmshaw, 1982]. In the 

denominator of equation (2.1), x is fixed for a specific specimen and u 

is related to the material and the absorption process. To obtain a 

high contrast image, strong absorption generated by low-energy 

radiation is needed. However, the radiated energy should match the 

thickness of a specimen. Therefore, with a specific material, M is 

controlled by a compromise between the contrast sensitivity and the 

penetrating power. Another term in the denominator, Gp is determined 

by the film contrast and the film exposure. If a film is over exposed 

or under exposed, Gq is roughly given by the slopes at the two ends of 

a film characteristic curve, which is very small. With a small GQ, the 
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value of Ax is high and the image contrast is very low. If the film is 

under exposed, the image should be reconstructed with a reconstruction 

method for missing information. If it is over exposed, a trend 

removing method may be used to remove the background intensity, and 

then, a dynamic range expanding method or histogram equalization used 

to obtain an improved image with increased contrast. 

Another factor not considered in equation (2.1), is contrast 

reduction caused by quantum fluctuation due to random emission and 

absorption of X-ray quanta. With known statistics of the fluctuation, 

a filter can be chosen to reduce this effect. 

Unsharpness 

Unsharpness refers to the blurred image of a sharp edge of a 

specimen. There are at least two main causes of radiographic 

unsharpness; geometric unsharpness and film unsharpness [Halmshaw, 

1982]. Geometric unsharpness is caused by the finite size of the 

radiating source. It is exactly analogous to a penumbra in visible 

light. This unsharpness can be avoided by using a point source, or 

alternatively, increasing the distance between the radiation source and 

the specimen. However, the intensity of the radiation decreases with 

distance by an inverse square law, and thus, rapidly increases the 

required exposure time. A compromise has to be made between geometric 

unsharpness and the distance. 
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Film unsharpness is caused by the scattering of electrons in the 

film emulsion. With high energy radiation, several hundred silver 

halide crystals may be affected by the absorption of one X-ray quantum 

in the film emulsion which may mask an image of a sharp edge. 

Assuming that the intensity of an image is represented by x(i,j), 

unsharpness can be described by 

i+M j+N 
y(i,j) Z 2 x(k,l)b(k,l) (2.2) 

k=i-M l=j-N 

where b(k,l), a point-spread function describing the blurring, has a 

size determined by the width of the unsharpness. To obtain x(i,j) from 

observations y(i,j), a deblurring method should be developed. The 

critical condition is that the point-spread function b(i,j) must be 

known. 

Film Graininess 

Film graininess, a granular noise appearance of an image, is 

caused by a natural statistical fluctuation of randomly distributed 

silver particles. Many efforts have been made to find its statistics. 

In Nutting [1913] expressed the image density in terms of the number 

and size of grains. Based on this model, Selwyn [1939; 1959], related 

the standard deviation of the film-grain noise to the scanning spot 

size, A, by 

= G A"l/2 (2.3) 
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where G is the Selwyn granularity constant. Selwyn's formula is true 

only in certain circumstances. In Johns [1955] introduced a spectral 

analysis method to obtain by 

<^AD = W(f)df)l/2 (2.4) 

where w(f) is the Wiener spectrum of film-grain noise. If the spectral 

components of the specimen are known or have certain patterns, there is 

a definite advantage to using the Wiener spectrum to study film-grain 

noise. In several practical applications in the last two decades, a 

model relating cr^jj to the optical density was used for image 

estimations and enhancements [Huang, 1966; Naderi and Sawchuk, 1978; 

Kuan et al., 1985]. This model is 

1 
(2.5) 

where k is a constant related to the ratio of the grain size to the 

scanning spot size, and D is the optical density of the image. 

Equation (2.5) shows that the noise is signal dependent. 

Film-grain noise smears the fine detail and reduces the contrast 

of an image. If we define the signal-to-noise ratio by the ratio of 

signal intensity (D-My) to standard deviation where My is a mean of 

the background intensity, a signal-to-noise ratio of above 2 is 

required to detect a signal, and a signal-to-noise ratio of above 4 is 

required to recognize a signal. A simple and direct method to reduce 

^AD to increase the size of A [Dainty and Shaw, 1974]. However, 
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increasing A will decrease the resolution of a digitized image. If we 

know the characteristics of the film-grain noise, we can choose a 

proper filter to reduce it. 

Many articles and text books [Herz, 1969; Dainty and Shaw, 1974] 

show that film-grain noise is spatially clustered and correlated. In 

addition to demonstrations given by micrographs of film-grain spatial 

structures, the correlation can be readily found from the Wiener 

spectrum of the film-grain noise which mainly consists of low-frequency 

components. The level and flatness of the spectrum depend on the 

quality of a film [Halmshaw, 1982]. Very-fine-grain film has a 

relative low and flat spectrum distribution approximately modeled by 

white noise. Otherwise, for a general case, film-grain noise should be 

modeled by colored (correlated) noise whose correlation distance is 

related to the scanning spot size, A, and the X-ray energy used. In 

addition, the blurring process of chemical diffusion and adjacency 

effects during the film development will increase the correlation 

distance. Hence, noise appears to be spatially correlated in an 

observed image. Our calculation of the autocorrelation coefficients 

for noise fluctuations verifies that the noise is spatially correlated. 

The autocorrelation coefficients, found in the flat areas of the 

images, vary at lag 1 from 0.2 to 0.5 for the images displayed later. 

The correlation distance varies from 2 to 4 pixels. 

The probability distribution of optical density has been reported 

to be nearly Gaussian for a particular dynamic range of a film [James, 
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fluctuation [Dainty and Shaw, 1974], but, this is not necessarily true 

for every image met in practice. 

Based on results of the image analysis, a possible approach can be 

chosen for image enhancement. If the film is processed in the linear 

region of the D-logE curve, the film grain noise is additive in an 

observed image. Thus, considering the above discussions, a specific 

filter approach is chosen to reduce the noise level for a specific 

image. We suggest: reduce salt and pepper noise with a median filter, 

reduce Gaussian white noise with a sigma filter, reduce signal-

dependent white noise with an adaptive smoothing filter, reduce colored 

noise or signal dependent colored noise with a Kalman filter, reduce 

the effect of over exposure with a trend removal and a dynamic range 

expansion or histogram equalization, improve an under exposed image 

with image reconstruction by considering missing information, and 

finally, improve sharpness of an image with a deblurring algorithm. 
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ENHANCEMENT METHODS 

Various applied enhancement techniques, except deblurring and 

reconstruction, are briefly described in this section. To obtain good 

results, try several of them iteratively on an image. A combination of 

several methods can often produce good results. 

Trend Removal 

Trend removal removes the large scale intensity variation caused 

by either the geometry of a specimen or over exposure. Combining this 

method with a dynamic range expansion or histogram equalization can 

reveal masked fine structures or flaws. This work is well discussed 

and documented by Doering [Doering, 1987]. The basic idea of a trend 

removal method is to fit a polynomial model to the background trend by 

least-squares, and then find the residuals between the image and the 

polynomial model. This fit could be for an entire image or for a 

running window. It could also be either one dimensional or two 

dimensional. As an example, we fit a second-order one-dimensional 

polynomial to samples y^ by-

?£ = a + bi + ci^ (2.6) 

where i is the location of a sample and coefficients a, b, c are found 

by minimizing the summation of the squared error 
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Q = Z (yi - Pi)2 (2.7) 

where N is a window size. Taking a derivative with respect to each 

coefficient of equation (2.7) and equating to zero, three linear 

equations can be formed in three unknown coefficients. Subsequently, 

the three coefficients can be determined. 

If an image has a small dynamic range, the structure of the image 

may not be easily discerned by eye. In this case, a simple formula is 

useful. The small dynamic range is expanded by 

where y^ is an intensity value of the image and and are 

maximum and minimum values in the expanded image, respectively, y^ax 

and y^in ^re maximum and minimum values in the original image. The 

expansion ratio is given by (Yniax~^min^/^ymax~ymin^• The value of 

(Ymax'^min) depends on the capability of a specific image display 

system. Equation (2.8) is linear, but a nonlinear expansion may be 

also helpful. 

Dynamic Range Expansion 

^min ^ (^i ^^min^^^max ^min^'^^^max ̂ min) (2.8) 



www.manaraa.com

69 

Histogram Equalization 

Histogram equalization is useful for enhancing an image whose gray 

levels are in a narrow range and a few pixels are sparsely distributed 

over a large dynamic range. If the interesting information is in the 

narrow range, it can be revealed by modifying the histogram of gray 

levels to a histogram with a uniformly distributed probability density 

function. Let a sample be normalized by y^/y^ax the new value of this 

sample after the histogram equalization is given by [Gonzalez and 

Wintz, 1977]. 

where p^Cu) is a probability density function for the gray level y^. 

P£ can be readily obtained from the histogram. The enhanced image can 

be obtained by magnifying Yi with equation (2.8). 

A median filter is a nonlinear filter used to reduce impulse (or 

salt and pepper) noise with the advantage of preserving edge 

information. There are many forms of median filters. Two recent 

papers [Arce and McLoughlin, 1987; McLoughlin and Arce, 1987] give good 

reviews of this technique and report the latest progress. A two-

dimensional N X N recursive median filter is given by 

(2.9) 
0 

Median Filter 

Yi,j = median {Y^.w j, • • • > ^i-l,j» ^i,j' •••' ̂ i+N,j^ ( 2 . 1 0 )  
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where 

^m,n ~ median {Zm,n-N' ••*» ^m,n-l' ^i,j' ^m.n+N^ 

and j is an estimation of the median filter for sample j. 

Sigma Filter 

The sigma filter is designed for smoothing Gaussian white noise. It 

averages pixels whose gray levels are in the ±2^^ range for a given 

pixel within a window [Lee, 1984] where is the standard deviation of 

the noise. A (2N+1) x (2N+1) two-dimensional sigma filter is given by 

i+N j+N 

Z Z ykl"kl/NUMij, if NUMi • > K 
k=i-N l=j-N 

Yi| = (2.11) 
i+N j+N J 
2 2 yki/(2N+l) , if NUM^; <K 

k=i-N l=j-N 

where 

"kl 

1, if y^j - 2a^ < y^i < Xij + 2a„ 

0, otherwise 

and 

i+N j+N 
NUM.' .• = Z Z Wki 
^ k=i-N l=j-N 

The value of K is chosen so that isolated spot noise can be removed 

without destroying subtle details of an image. The sigma filter may be 

used iteratively. 
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Adaptive Smoothing Filter 

The adaptive smoothing filter is designed to smooth signal 

dependent white noise. There are several forms of adaptive smoothing 

filters [Lee, 1980; Kuan et al., 1985]. Assuming that an observation 

equation is given by 

Yij = Xij + Uij (2.12) 

where u^j is an iid(0,V^Cx^j)) and V^Cx^j) is a semi-positive-definite 

function of the signal x^j. u^j can be represented by f(x£j)n£j where 

f(x£j) means signal dependent and n^j is an iid(0,l). The principle of 

an adaptive smoothing filter is to estimate x^j by first predicting a 

local mean and then correcting this by a calibration factor. The 

estimation of x^j is given by 

Xij - Xij + (2.13) 

where x^j is a local mean of X£j equaling y^j because E[u£j]=0. x^j is 

calculated from an N x N local window, k^j, a calibration gain found 

by minimizing the least-squared error, is given by 

kij = Vxij/(Vxij+?u(xij)) (2.14) 

where is a variance of the signal x^j and Vy(x£j) is a variance of 

the noise u^j. If the signal-to-noise ratio is very high, is close 

to one and the estimate is close to the measurement. If the signal-to-

noise ratio is low, k^j is close to zero and the estimate is close to 
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the local mean. Since E[n£j]=0, the covariance between x^j and mj is 

zero and Vy^j-V^ij+Vy^j where Vy^j is a variance of y^j. Thus, k^j can 

be calculated by (Vy£j-V^Cx^j))/Vy£j. This filter is similar to a one-

dimensional Kalman filter with a predicted state given by a mean value. 

Kalman Filter for Image Restoration 

A Kalman filter recursively separates two or more stochastic 

processes with the criterion of least-squared error. The spectra of 

those processes may overlap preventing classical filters such as low-

pass or high-pass filters from separating the processes. The theory of 

the Kalman filter is introduced in many papers and text books [Kalman, 

1960; Kalman and Bucy, 1961; Gelb, 1974; Brown, 1983].The Kalman filter 

was first introduced in the control area and has been widely applied to 

control systems, navigation systems, and random signal processing 

systems. The application of Kalman filtering to image restoration was 

intensively investigated in the last decade [Woods and Radewan, 1977; 

Suresh and Shenoi, 1981; Rajala and de Figueiredo, 1981; Dikshit, 1982; 

Biemond et al., 1983; Tekalp et al., 1986]. 

As a simple example, let a vector of observations be given by 

yij = *ij + Vij + "ij (2.15) 

where x^j is a signal vector to be estimated, v^j is a colored noise 

vector, and n^j is white noise vector. The estimation vector, Xfj. 

given by a Kalman filter is 

*ij = *ij + Kij- (yjj - xjj - vjj) (2.16) 
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where x^j is the a priori estimate of predicted by a signal model, 

and V£j is the a priori estimate of v^j given by a noise model. K^j is 

an optimal gain vector. More details of the application of the Kalman 

filter to radiographic image enhancement are given by Zheng and Basart 

[1988]. 
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IMAGE FEATURE EXTRACTION 

Image feature extraction is a process of image classification. 

Image features refer to meaningful image components and their inter 

relation. They are classified by intensity, contrast, edge, size, and 

shape of spatial activity. Detected features may be structures of a 

specimen, or significant flaws or cracks. Three useful methods 

discussed here are spatial activity detection, image segmentation, and 

significance testing. 

Flaw Spatial Activity Detection 

Spatial activity of an image is related to the concept of large 

scale spatial fluctuations measured by variances and covariances, or 

the concept of small scale spatial variation measured by gradients. We 

use a modified masking function to identify spatial activity of an 

image. The masking function at a pixel is a weighted sum of the 

intensity slopes at the pixel under consideration and at the 

neighboring pixels [Rajala and de Figueiredo, 1981]. The masking 

function also plays a role as an edge detector. There are many edge 

detection methods and most of them are sensitive to noise. This 

modified masking function can detect spatial activity of moderately 

sized flaws in a low signal-to-noise ratio image where a conventional 

edge detection method may fail. The masking function is defined as 
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1 i+r j+r I 
= - Z Z a' 

C p=i q=j-r 

(i,j),(p,q) 
Z D 
k=l 

pqk (2.17) 

where a is a constant less than one, r is a window size, ||(i,j) • 

(p,q)ll is the Euclidean distance, and Dpg^ is a slope of a pixel 

(p,q) in a direction of k. The value of Dpq^ can evaluated by 

M M 
D pqk 'y(p+ai)(q+bi) y(p+ci)(q+di) 

1=1 1=1 

( 2 . 1 8 )  

where 

a = 

a = 

a = 

a = 

0, b 

1, b 

1. b 

1, b 

1, c 

1, c 

0, c 

-1, c 

0, d = 

-1, d = 

-1. d = 

•1, d = 

- 1  

- 1  

0 

1 .  

if k 

if k 

if k 

if k 

1 

2 

3 

4, 

and I.I indicates absolute value, and M is a smoothing length. The 

smoothing length M should be larger than the significant correlation 

distance of the noise and smaller than the size of the fine structure 

to be detected. Since formed in a different way than that of 

the standard masking function [Anderson and Netravali, 1976; Netravali 

and Brasada, 1977], the function given by equation (17) and (18) is 

called the modified masking function. We have applied the modified 

masking function to X-ray radiographic images. Figure 2.1a shows a 

digitized radiograph of a fuel-tank weld from the Martin Marietta 
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Corporation. The image size, 256 x 256, represents a physical area of 

2 
8.2 X 8.2 mm . The trend of the image was removed by the method 

mentioned above. If the SNR is defined by the ratio between the 

relative intensity of the flaw and the standard deviation of the noise 

[Zheng and Basart, 1988], the signal-to-noise ratio of Figure 1.1a is 

about 5.0 for the strongest flaw. A Kalman filter was first applied to 

the image to reduce the noise level [Zheng and Basart, 1988] followed 

by a sigma filter to further enhance the image. The modified masking 

function was then used to detect the spatial activity of the filtered 

image with the result given by Figure 2.1b. One can see that the 

spatial activity of the flaws is well detected while the effect of the 

noise is small. However, the outlines of flaws are not closed lines 

and are wider than that given by a conventional gradient method or a 

conventional masking function. This is a price paid for reducing the 

noise effect. 

cv-

Figure 2.1. (a) A digitized NDE radiographic X-ray image of a weld 
from the Martin Marietta Corporation, (b) an output of the 
masking function for a filtered image of (a). 
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Flaw Detection by Image Segmentation 

There are two types of image segmentations: low-level and high-

level. Low-level image segmentation partitions an image according to 

statistical numbers while high-level image segmentation partitions an 

image according to its natural physical contents [Gonzalez and Wintz, 

1977; Schachter et al., 1979; Nazif and Levine, 1984; Stansfield, 

1986]. There are many image segmentation methods such as optimal 

thresholding [Gonzalez and Wintz, 1977], split-and-merge methods [Chen 

and Pavlidis, 1979], model-based methods [Chatterjee and Chellappa, 

1987], the Gibbs distribution method [Elliott et al., 1986], region 

growing and region clustering [Gonzalez and Wintz, 1977], K-mean method 

and isodata method [Tou and Gonzalez, 1974]. Fuzzy c-mean clustering 

[cannon et al., 1986], and rule-based expert systems [Nazif and Levine, 

1984; Stansfield, 1986; Zheng and Basart, 1987]. 

We have used a low-level image segmentation method and a rule-

based system to partition an image [Zheng and Basart, 1987]. We have 

found flows with simple thresholding based on a significance test. The 

darkness of a pixel, which is related to density of a film, is 

significant if it is less than a threshold 

1; if yi: < mean of the background noise - Ka_ 
dij = ^ (2.19) 

0; otherwise 

where i s  the standard deviation of the noise and K > 2.0. Then, a 

binary file is formed by d^j. This procedure was used to detect flaws 
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in the filtered image of Figure 2,1a with the result shown in Figure 

2.2. Three flaws are easily seen in Figure 2.2, whereas in Figure 2.1 

it is difficult to see the right flaw. The shape and size are also 

well displayed in Figure 2.2. 

The techniques described herein have been implemented on the Iowa 

State University VAX 11/780 computers. Among the above steps 

discussed, we feel that image analysis is a critical step. Conclusions 

about the image analysis will be main reasons for choosing specific 

enhancement methods. In addition, the accuracy of conclusions or 

models obtained from the image analysis will influence the results of 

the enhancement and feature extraction no matter what filters are used. 

* 
% 

Figure 2.2. Plot of detected flaws of Figure 2.1(a) after the 
processing 
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PART III. APPLICATION OF ADAPTIVE REGIONAL KALMAN FILTERING TO X-RAY 

IMAGES IN NDE 
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ABSTRACT 

X-ray images of flaws in thick dense materials can be improved by 

image enhancement techniques. These images are usually noisy and have 

low contrast. We have developed a procedure for enhancing the contrast 

of a flaw and smoothing the image while preserving the edges of the 

flaw. The steps involved in this procedure are: 1) image 

segmentation, 2) autoregressive (AR) model identification, and 3) 

adaptive regional Kalman filtering. An image is segmented by a 

modified K-mean clusterseeking algorithm. This algorithm uses 

information from local means and from local masking functions 

representing spatial activity of an image. Each of the segments is 

divided into many small windows. After this, each window is modeled by 

an AR process. By keeping each window small, e.g., 7X7 pixels, the 

model more clearly represents the data. The model of each window is 

transformed to a state-space form and put into a Kalman filter. Each 

window is smoothed four times by passing the Kalman filter through a 

central pixel of interest from four different orthogonal directions. 

The four passes giving four estimates of the pixel intensity, are 

optimally weighted and combined to give the final pixel estimate. This 

enhancement procedure includes several advancements in image processing 

by emphasizing local information, incorporating noncausality, 

preserving edges, and adaptively identifying and estimating regional 

models. Many image enhancement techniques will smooth out the noise, 

but they also blur the edges and the details of the image. 
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INTRODUCTION 

One of the time-consuming procedures in inspecting parts by x-ray 

film is the identification of a flaw. Low contrast films of dense 

objects especially cause problems. A radiologist must have 

considerable experience in identification in order to keep the 

examination time relatively small, but also keep the reliability high. 

Our objective in this project is to develop a computer procedure that 

will sufficiently enhance flaws in an image in a manner that will 

reduce the time it takes a human to locate and identify a flaw. 

Factors limiting the quality of an X-ray image are image 

unsharpness, quantum fluctuation, film grain and film contrast 

[Halmshaw, 1973; 1982]. The unsharpness caused by scattered radiation 

reduces the image contrast. The quantum fluctuation caused by random 

emission and absorption of X-ray quanta smears or masks the contrast. 

The film grain and contrast limit the recorded information capacity. A 

coarse-grained image conveys less detail than one of fine grain. In 

this paper, we discuss a method for enhancing the image by reducing the 

fluctuation due to disturbances, such as quantum fluctuation and 

granularity, etc. The main tool used is the Kalman filter. The basic 

idea is to estimate a pixel optimally in an image using a given pixel 

and its near neighbors. The Kalman filter can include a model of the 

process that generated the desired information, a model of the noise 

added to this process, a model of the measurement system, and a model 

of the noise within the measurement system. In addition, there can be 
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multiple models representing multiple processes at any one, or all, of 

these stages. Another advantage of the Kalman filter is that it can 

distinguish between stochastic processes that have strongly overlapping 

spectra. Ordinary spectral filters are of limited benefit under such 

conditions. When processing noisy images one often finds that the 

noise, system, and signal processes overlap in frequency. 

Three steps are involved when implementing our method of 

filtering. They are 1) image segmentation, 2) image modeling, and 3) 

Kalman filtering. Each of these procedures will be explained. The 

results of filtering a low contrast flaw in an x-ray image will be 

discussed at the end of the article. 
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SEGMENTATION 

Segmentation is an image classification procedure. Autoregressive 

modeling, which we incorporate in our method, requires stationarity. 

Generally, the stationarity assumption is not true for the processes in 

an image over the whole image and this violation will cause blurred 

edges and reduced contrast in a filtered image. Therefore segmentation 

is necessary to find regions in which the statistics, mean and 

variance, are stationary. 

An image is segmented by partitioning it with respect to local 

mean and local spatial activity of the image [Schachter et al., 1979; 

Rajala and de Figueiredo, 1981]. Spatial activity is defined as the 

rate of change of spatial luminance from one pixel to another. It is 

related to the concept of variance. The formula used to calculate the 

spatial activity is called the masking function. Regions of stationary 

mean and stationary variance can be found by segmenting an image by 

local means and by the masking function, respectively. With these two 

segmentations in hand, they can be combined to produce new segments 

that are wide-sense stationary. 

Local means are found by a window of running average. A 

(2n+l)x(2n+l) window is selected in one corner of the image. All 

pixels within the window are averaged. This average is assigned to the 

center pixel. The window is then moved and the process is repeated. 

The mathematical expression for the local mean is 
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1 i +n j +n 
nin(i)j) = 2 ^ Z z(p,q) (3.1) 

(2n+l) p=i-n q=j-n 

where z(p,q) is the image intensity at pixel p,q. After calculation of 

the mean for all windows, a file of the local means is set aside for 

later use. 

The next step is to determine the masking function for the image. 

The masking function is defined by 

Mj.(i , j)  = z g-l Kx,y) -  (p,q)l I [(1/4) z Opg^] (3.2) 
p=i-r q=j-r p=0 

where ||(x,y) - (p,q)|| is the Euclidean distance between points (x,y) 

and (p,q), (x,y) is center pixel of a window, (p,q) is any other point 

in the window, and D is the difference in intensity between a pixel 

adjacent to (p,q) and the pixel at (p,q). The difference, D, is summed 

over all pixels adjacent to (p,q). The average of these differences is 

weighted exponentially by the distance from (p,q) to (x,y). After the 

masking function is calculated for all the windows, it is recorded in a 

file. 

The next step is to use the local means and masking function to 

segment the image. A cluster seeking procedure, somewhat similar to 

the K-means cluster seeking algorithm [Tou and Gonzalez, 1974], is used 

to cluster local means and masking functions. It differs from the 

standard K-means cluster seeking algorithm in that the thresholds of 
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the distance between the cluster center are given for simplicity. Each 

local mean and masking function is assigned to a certain cluster. All 

combinations of local mean clusters and masking clusters form wide-

sense stationary regions which we desire. 
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MODELING 

A f t e r  c o m p l e t i n g  t h e  s e g m e n t a t i o n ,  t h e  p r o c e s s  i n  e a c h  s e g m e n t e d  

r e g i o n  i s  r e p r e s e n t e d  b y  a  p - o r d e r  A R  p r o c e s s :  

P 
s(k) = Z s(k-n) + w(k) (3 

n = l  

where z(k) is the measurement of intensity at a pixel, v(k) is an 

additive measurement white-noise sequence, s(k) is a "true image" 

process, w(k) is a residual sequence, H is a (ixm) measurement vector 

and s(k) is an (mxl) vector of s(k). v(k) and w(k) are independent and 

uncorrelated with E[v(k)] = 0, E[w(k)] = 0, E[v(k)w(h)] = 0, E[v(k)v(k-

h)] = R*6(h) and E[w(k)w(k)] = Q'6(h). s are coefficients to be 

estimated. There are a number of ways to estimate s such as maximum 

likelihood or least squares approaches [Box and Jenkins, 1976]. 

"Marquardt's compromise" [Marquardt, 1963; Pankratz, 1983] and Yule-

Walker equation [Box and Jenkins, 1976] methods are often used in 

practice. We estimate the $'s by solving the Yule-Walker equation 

z(k) = H  s(k) + v(k) (3.4) 

r  0  =  r j  (3.5) 

where 
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ri = [rj rg rg ... 

r = 

^0 

ro 

fp-l 

"^p-l 

• 0  

The r's are autocorrelation coefficients of s(k). Given the measured 

z(k)'s and the variance R of v(k), the r's can be found by taking the 

expectation of (Rajala and de Figueiredo, 1981). The semi-positive 

definite property of the r's must be considered when the r's are 

calculated [Fuller, 1976]. 

After a state-space form of (3.3) is obtained [Abraham and 

Ledolter, 1983], we are ready to apply the Kalman filter. 



www.manaraa.com

93 

KALMAN FILTERING 

The Kalman filter is an optimal linear filter that can separate 

two or more stochastic process. The Kalman filter theory and 

applications can be found in many sources [Kalman, 1960; Kalman and 

Buoy, 1961; Brown, 1983]. 

Since all quantities required for Kalman filtering have now been 

found, the optimal estimates of pixels are obtained by the following 

recursive procedure: 

1. Enter the recursive loop with the initial values of the a 

prior estimated (nxl) vector s(k|k-l) and its error 

covariance matrix P(k|k-l) 

2. Compute the Kalman gain 

K(k|k) = P(k|k-1) (HP(klk-l) nf+R) ̂  (3.6) 

3. Estimate a pixel 

s(k|k) = s(k|k-l) + K(k|k) (z(k) - H s(k|k-l)) (3.7) 

4. Compute the error covariance matrix 

P(k|k) = (I - K(k|k) H) P(k|k-1) (3.8) 

5. Predict 

s(k+l|k) = $ s(k|k) (3.9) 
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P(k+l|k) = * P(k|k) 0^ + Q 

* is a transition p x p matrix from equation (3.3) [Abraham and 

Ledolter, 1983]. The process is repeated for the next pixel z(k+l) 

from step 2 until all pixels are processed. One should be careful 

the Kalman equations are simplified due to the scaler modeling. 
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RESULTS 

By applying the above procedure to low-contrast X-ray images, we 

have produced enhanced images. One example of a processed image is 

shown here. It is an 88x88 pixel subimage of an X-ray image of a 

casting. There is a flaw located near the center area of the image. 

The flaw is not obvious in the original image which is very dense and 

has low contrast. The contour map of the original image is shown in 

Figure 3.1(a). The variance of the disturbance fluctuation measured 

from a flat area in the original image is 1.6. The result from 

filtering is shown in the contour map in Figure 3.1(b). Since the 

dynamic ranges of the images are too small (about 20 to 30), histogram 

equalization with an exponential transformation function was applied to 

both the original and filtered images. Ruled surface plots of the 

original and the trans formation results are shown in Figure 3.2(a) and 

Figure 3.2(b), respectively. The dynamic range in Figure 3.2 has 

increased to 128. In the original image, the flaw region is broken 

into many spikes which make flaw detection difficult. The filtered 

image shows a bigger concentration of intensity within a region that 

can be defined by a single boundary. Compared with the original image, 

the filtered one has a lower and smoother background. Thus the flaw in 

the filtered image is easily detected now. 

The experiment was done on an ISU VAX 11/780 computer. The CPU 

time for running the Kalman filter part was about 8 minutes (88x88 

pixels) using a moving window. The modeling and filtering were applied 
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to a 7x7 moving window and the 3x3 pixels in the center of the window 

were saved each time. 

o- 0 

(a) (b) 

Figure 3.1. Contour plots of intensity before (a) and after (b) 
filtering. Contour levels are the same in both plots. 
The flaw in the filtered map (b) clearly stands out above 
the background. 

(a) (b) 

Figure 3.2. Ruled surface plots before (a) and after (b) filtering. 
In the filtered map (b), the background noise is lowered 
and smoothed, and the power in the flaw is more 
centralized and less "spikey" than in the original map. 
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ABSTRACT 

A noisy image can be improved by an adaptive filtering procedure. 

A procedure we have developed includes four major steps: 1) low-level 

image segmentation, 2) noise measurement, 3) ARMA image model 

identification and estimation, and 4) adaptive Kalman filtering. This 

procedure smooths out noise but preserves edges and the details of 

image well. The procedure is controlled by an expert system with no 

human interaction. Little a priori knowledge about the "true image" is 

required. General knowledge (as rules) about the whole procedure and a 

set of control rules are used in the rule-based expert system. 
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INTRODUCTION 

Image segmentation, modeling, and restoration are subjects of 

great interest in image processing. They find wide application in a 

variety of ares such as medical thermography, nondestructive 

evaluation, radio astronomy, synthetic radio imagery, satellite 

imagery, and military target screening. They are often used for 

picture analysis, feature extraction, target identification, and noisy 

image enhancement. Much research progress has been accomplished and 

many algorithms have been developed for these subjects. However, there 

often can be a gap between the invention of an algorithm and the 

development of the algorithm for useful practice since the amount of 

knowledge required to use new methods can be extensive. In our 

research we are developing image processing algorithms for enhancing X-

ray images in the area of nondestructive evaluation (nDE) and for 

improving radio astronomical images created by aperture synthesis. In 

this paper, we report our initial results of implementing an automatic 

realization of our image processing procedure by a rule-based expert 

system. 

Our procedure, which includes image segmentation, noise 

measurement, modeling, and Kalman filtering, is designed to restore a 

noisy image (degradation by Gaussian white noise is assumed at this 

stage of our work). In the last decade, a Kalman-filter approach to 

image restoration has been given such great attention that much 

progress has made [Woods and Radewan, 1977; Woods 1981; Suresh and 
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Shenoi, 1981; Rajala and de Figueiredo, 1981; Dikshit, 1982; Biemond et 

ai., 1983]. For most of these approaches, stationarity of an image, or 

of a strip, or of a window has been assumed for the convenience of 

processing the image. In addition, models of original images are 

assumed in some approaches. The assumptions of stationarity and of an 

available model are often not true. Stationarity may not be valid due 

to the abrupt variation of an image. Complete a priori knowledge about 

an original image may not be available in practice. In our approach, 

little a priori knowledge of the original image is required. The 

assumptions are 1) the noisy image is degraded by Gaussian white noise 

with an unknown variance, and 2) there is a moderately-sized flat area 

or an area whose trend can be removed in the image. Low-level image 

segmentation is used to partition an image into approximately wide-

sense stationary areas. Then modeling and Kalman filtering are applied 

to each irregularly segmented area. Since the filtering procedure is 

realized in each segmented area, edges and details of an image can be 

accurately preserved. Because irregular areas are considered, a 

region-seeking and scanning algorithm is necessary. Monitoring and 

controlling of the procedure are achieved by a region growing 

algorithm, an area scanning algorithm, and a tree-structure seeking 

algorithm. These three main control rules and the low-level properties 

of an image are used as knowledge rules in the rule-based expert 

system. 
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ALGORITHMS 

The three steps discussed in the following material are 1) image 

segmentation, 2) noise estimation and image modeling, and 3) adaptive 

Kalman filtering. 

Image segmentation is a process of classification. Image 

classification consists of low-level and high-level evaluations and has 

been widely used in feature extraction. Low-level segmentation 

consists of studying an image and understanding the processes involved. 

In this stage, an image is partitioned into uniform regions according 

to spatial activities of the image [Rajala and de Figueiredo, 1981; 

Schachter et al., 1979]. Whereas, at the high-level stage one 

interprets the natural contents of an image. In this paper we consider 

only low-level segmentation. Intensity, contrast, edges, sizes, 

adjacency, and the shape of an image, provide information for 

segmenting an image. 

An image is primarily segmented by the histogram of the local 

mean. The local mean is found by a (2n+l) x (2n+l) window of running 

average. The local mean at pixel (i,j) is 

Image Segmentation 

1 i +n j+n j+n 
Z z(p,q) mn(i,j) = -

2 (2n+l) p=l-n q=j-n 
(4.1) 
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w h e r e  z ( p , q )  i s  t h e  i m a g e  i n t e n s i t y  a t  p i x e l  ( p , q ) .  T h e  t h r e s h o l d s  

s e p a r a t i n g  m o d e s  i n  a  h i s t o g r a m  o f  l o c a l  m e a n s  a r e  t h e n  c a l c u l a t e d  b y  a  

l o c a l  m i n i m u m - v a l u e  s e e k i n g  a l g o r i t h m .  T h i s  a l g o r i t h m  f i n d s  l o c a l  

m i n i m u m  v a l u e s  b y  s e a r c h i n g  f o r  s l o p e  c h a n g e s  i n  a  s m o o t h e d  h i s t o g r a m .  

L o c a l  m i n i m u m  v a l u e s  c a u s e d  b y  l o c a l  f l u c t u a t i o n s  a r e  t r a p p e d  a n d  

i g n o r e d .  

T h e  s p a t i a l l y  a c t i v i t i e s  a n d  e d g e s  a r e  d e s c r i b e d  b y  t h e  m a s k i n g  

f u n c t i o n  w h i c h  i s  d e f i n e d  a s  

i+r j+r I I/. .\ I I 3 
Mj.(i,j) = 2 2 . [(1/4) Z Dpq„] (4.2) 

p=i-r q=j-r n=0 

w h e r e  |  |  ( i , j ) - ( p , q ) | |  i s  t h e  E u c l i d e a n  d i s t a n c e  b e t w e e n  p o i n t  ( i , j )  a n d  

( p , q ) ,  a n d  D  i s  t h e  s l o p e  a t  t h e  p i x e l  ( p , q ) .  T o  r e d u c e  t h e  e f f e c t s  o f  

n o i s e ,  t w o  o r  t h r e e  p i x e l s  a d j a c e n t  t o  ( p , q )  a t  e a c h  s i d e  a r e  u s e d  t o  

c a l c u l a t e  t h e  s l o p e  f o r  o n e  o f  f o u r  d i r e c t i o n s .  T h e  s t a n d a r d  m a s k i n g  

f u n c t i o n  u s e s  o n e  a d j a c e n t  p i x e l  a t  e a c h  s i d e  t o  f i n d  D ,  a n d  i s  v e r y  

s e n s i t i v e  t o  n o i s e .  

A  s e t  o f  d e c i s i o n  r u l e s  i s  t h e n  m a d e  t o  s e g m e n t  a n  i m a g e .  W e  

i n t r o d u c e  t h i s  i n  t h e  n e x t  s e c t i o n .  

N o i s e  M e a s u r e m e n t  a n d  I m a g e  M o d e l i n g  

I f  w e  h a v e  s a t i s f a c t o r i l y  s e g m e n t e d  a n  i m a g e ,  t h e n  t h e  p r o c e s s  i n  

e a c h  s e g m e n t e d  r e g i o n  i s  a p p r o x i m a t e l y  w i d e - s e n s e  s t a t i o n a r y .  A n  

i r r e g u l a r  a r e a  s e e k i n g  a n d  s c a n n i n g  ( a s  a  c o n t r o l  r u l e )  a l g o r i t h m  i s  
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used to collect data into an one-dimensional array which can be 

represented as 

P q 
s(k) = z <l)̂  s(k-n) + z w(k-n) + w(k) (4 .3 )  

n=l n=l 

where z(k) is the measured intensity at a pixel, v(k) is an additive 

measurement white-noise sequence, s(k) is an original image process 

represented as a ARMA(p,q), and w(k) is a residual sequence. The 

sequences v(k) and w(k) are independent and uncorrelated with E[v(k)] = 

0, E[w(k)] = 0, E[v(k)w(k)] = 0, E[v(k)v(k-h)] = R*g(h), and 

E[w(k)*w(k-h)] = Q*5(h). Since only the noisy image is available, we 

have to find the noise level from the available image. Theoretically, 

if there is a moderately sized flat region in which pixels of an 

original image are close to a constant, the variance of the noise can 

be found by calculating the variance of the noisy image in this region. 

We developed an algorithm to search for this area. Since the local 

mean is not sensitive to noise, the algorithm seeks this region from 

the segmented local mean file. If all segmented areas of the local 

mean do not meet the requirements, a failure signal is given. The 

requirement for success is that the variance of an segmented region of 

local mean has to be less than a certain value. 

The next step is to find the coefficients of equation (4.3) given 

only the measurement sequence z(k). There are two methods for doing 

this. One of them finds an AR(p) process of z(k) by solving the Yule-

Walker equation [Box and Jenkins, 1976], and substitutes this model 
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into equation (4.4). Then an ARMA(p,q) form of s(k) can be found. The 

coefficients of the AR part of s(k) are the same as those of the AR(p) 

model of z(k), and the coefficients of the MA part of s(k) can be found 

by solving a set of non-linear equations which could be complicated 

except for the case of p=l. However, an ARMA(1,1) model can represent 

many processes. Another method for finding the coefficients of s(k) 

involves subtracting the noise variance from the covariance of z(k), 

and then finding an ARMA(p,0) model of s(k) by solving the Yule-Walker 

equation. In the second method, one must adhere to the semi-positive 

definite of the autocorrelation coefficients of s(k) [Fuller, 1976]. 

Hence a factor whose value is less one is multiplied by the noise 

variance before the subtraction. In both methods, an equation for 

calculating the Q value is needed. The ARMA model can be written in a 

state-space form and implemented with the Kalman filter [Abraham and 

Ledolter, 1983]. 

A d a p t i v e  K a l m a n  F i l t e r i n g  

A  b a n k  o f  K a l m a n  f i l t e r s  i s  u s e d  t o  s e p a r a t e  t h e  o r i g i n a l  i m a g e  

f r o m  t h e  n o i s e .  T h e  K a l m a n  f i l t e r  i s  a n  o p t i m a l  l i n e a r  f i l t e r  w h i c h  

d i s t i n g u i s h e s  b e t w e e n  t w o  o r  m o r e  a d d i t i v e  s t o c h a s t i c  p r o c e s s e s  w h o s e  

s p e c t r a  o v e r l a p .  T h e  K a l m a n  f i l t e r  i s  a p p l i e d  t o  e a c h  s e g m e n t e d  r e g i o n  

w i t h  a  d i f f e r e n t  s t a t e  t r a n s i t i o n  m a t r i x  o b t a i n e d  i n  t h e  m o d e l i n g  

s t a g e .  T h e r e f o r e ,  t h e  K a l m a n  f i l t e r  p a r a m e t e r s  a r e  a d a p t e d  t o  t h e  

l o c a l  f e a t u r e s  o f  a n  i m a g e .  K a l m a n  f i l t e r  t h e o r y  h a s  b e e n  i n t r o d u c e d  
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in many textbooks and papers [Kalman, 1960; Kalman and Bucy 1961; 

Brown, 1983] so we do not list the recursive equations here. 
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RULE-BASED EXPERT SYSTEM 

"An expert system is a rule-based AI application program for doing 

a task which requires expertise" [Charniak and McDermott, 1985], In 

recent years, rule-based expert systems have been applied to image 

segmentation [Nazif and Levin, 1984; Stansfield, 1986]. The general 

structure of an expert system can be described by three major 

components: l) a short-term memory (STM), 2) a long-term memory (LTM), 

and 3) an interpreter. The STM stores input images, local means, 

masking functions, histogram of local means, segmentation marks of 

segmented regions, data tree structure and leaves, data stacks and 

pointers, and intermediate results of the processed image. The LTM 

stores the knowledge about low-level segmentation, modeling, and the 

procedural control strategies. Knowledge is represented by condition-

action rules of the form: 

FROM <phenomenon> 

IF <condition 1 .AND. condition 2 .AND AND. 

condition N .OR. condition N+1 .OR OR. 

condition N+M>, 

THEN <actions> 

Some of the rules we use are: 

A. Rules for Merging 

RULE (201): 
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FROM 

IF 

THEN 

RULE (202): 

FROM 

IF 

THEN 

RULE (203): 

FROM 

IF 

THEN 

RULE (204): 

FROM 

<Dynamic range of a region is too small> 

<The region size is very low .AND. adjacency with 

another region is high .AND. the difference in 

local mean with another region is not high .AND. 

the difference in masking function with another 

region is not high> 

<Merge the two regions> 

<The region size is small> 

<The region size is higher than a certain value 

.AND. adjacency with another region is high .AND. 

the difference in local mean with another region is 

not high .AND. the difference in masking function 

with another region is not high> 

<Merge the two regions> 

<The region size is too small> 

cAdjacency with another region is high .AND. the 

difference in local mean with another region is not 

high .AND. the difference in masking function with 

another regions is not high> 

<MERGE THE TWO REGIONS> 

<The region size is less than 3> 
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IF 

THEN 

RULE (205): 

FROM 

IF 

THEN 

<There is only one adjacent region> 

<Merge the two regions> 

<The region size is less than 3> 

<The difference between the mean value and the 

center of adjacent region I is a minimum among 

other adjacent regions> 

<Merge this region with region I> 

B. Rules to Find segmentation Threshold in a Histogram 

RULE (301); 

FROM 

IF 

THEN 

RULE (302); 

FROM 

IF 

THEN 

RULE (303); 

FROM 

<There is a double mode in the histogram> 

<The difference between centers of the modes is 

higher than a constant + 2*rms of the noise> 

<Choose a value which has an equal distance to the 

two centers as a segmentation threshold> 

<There is a local minimum value> 

<The local peaks in both sides are very high .AND. 

the distance between the two peaks is high> 

<Choose this local minimum value as a segmentation 

threshold> 

<There is a slope change in the smoothed histogram> 
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IF <The ratio between a location where the slope 

changes and an adjacent peak is large .AND. the 

slope changes from minus to plus> 

THEN <The location is a local minimum> 

RULE (304): 

FROM 

IF 

THEN 

<There is a slope change in the smoothed histogram> 

<The ratio between a peak and an adjacent minimum is 

large> 

<Define the minimum as a segment boundary> 

C. Rules for Segmentation 

RULE (401): 

FROM 

IF 

THEN 

RULE (402): 

FROM 

IF 

THEN 

RULE (403): 

FROM 

IF 

<The region size is large> 

<There is a double mode .AND. the dynamic range is 

high> 

<Segment this region by a threshold) 

<The dynamic range of a region is high> 

<There is a double mode> 

<Segment this region according to the histogram> 

<The variance of a region is high> 

<The region histogram is bimodal> 
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T H E N  < S e g m e n t  t h i s  r e g i o n >  

RULE (404): 

FROM 

IF 

T H E N  

RULE (405): 

FROM 

I F  

T H E N  

< R e g i o n  h i s t o g r a m  i s  b i m o d a l >  

< T h e  r e g i o n  s i z e  i s  n o t  s m a l l >  

< S e g m e n t  t h i s  r e g i o n >  

< R e g i o n  s i z e  i s  m e d i u m >  

< T h e  r e g i o n  h i s t o g r a m  b i m o d a l i t y  i s  v e r y  h i g h >  

< S e g m e n t  t h i s  r e g i o n  a c c o r d i n g  t o  t h e  h i s t o g r a m >  

D .  R u l e  f o r  N o i s e  M e a s u r e m e n t  :  

R U L E  (501): 

F R O M  

I F  

T H E N  

< R e g i o n  s i z e  i s  r a o d e r a t e >  

< T h e  v a r i a n c e  o f  l o c a l  m e a n s  i n  t h i s  r e g i o n  i s  n o t  

h i g h >  

< T h e  v a l u e  o f  ( ( v a r i a n c e  o f  t h e  r e g i o n  o f  t h e  n o i s y  

i m a g e )  -  ( v a r i a n c e  o f  t h e  r e g i o n  o f  t h e  l o c a l  

m e a n s ) )  i s  a n  a p p r o x i m a t i o n  o f  t h e n  a d d i t i v e  w h i t e  

n o i s e  v a r i a n c e >  

O t h e r  r u l e s  f o r  r e g i o n  g r o w i n g  a n d  a r e a  s e e k i n g  a r e  n o t  l i s t e d  h e r e  f o r  

t h e  s a k e  o f  b r e v i t y .  
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EXPERIMENTAL RESULTS 

The procedure has been tested with a simulation. Figure 4.1 is a 

digitized version of a photograph of the Very Large Array (VLA) radio 

telescope operated by the National Radio Astronomy Observatory in 

Socorro, New Mexico. The size of the digitized image is 480 x 512. 

The intensity range is 0 to 255. The noisy image created from Figure 

4.1 is shown in Figure 4.2. The variance of the additive noise is 

100.0. Figure 4.3 is a picture of the local means made from Figure 2 

which is similar to the result of a mean filter. The edges are blurred 

in the local-mean picture. Figure 4.4. is a result of applying a 

gradient method to detect the edges of the noisy image in Figure 2. 

Figure 4.4 shows that the gradient method is very sensitive to noise. 

Figure 4.5 is a result of applying the modified masking function to the 

noisy image which retains the definition of the edges. Figure 4.6 is 

one of the segments and Figure 4.7 shows an edge-detected version of 

Figure 4.6. It is interesting to note that the features of the 

antennas are clearly shown. Figure 4.8 is a Kalman filtered image from 

Figure 4.2. The figure shows that the Kalman filter smooths out noise 

and preserves the edges well. The noise variance is reduced by about 4 

dB. It took about 20 minutes of CPU time on an NAS-9 computer to run 

this procedure for a 480 x 512 image. We are developing a modified 

version that may reduce the computation time to about 5 to 7 minutes of 

a NAS-9 CPU time. 
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Figure 4.1, Original digitized image 

Figure 4.2. Image with noise 
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Figure 4.3. Image of local means of Figure 4 
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Figure 4.4. Image of gradients of Figure 4.2 
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Figure 4.5. Image of modified masking function of Figure 4.2 

Figure 4.6. Image of one segment 
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M 
/ •  

Figure 4.7. Edge detected version of Figure 4.6 

i 

m/ rl: 

\ 
0 r 0 

Figure 4.8. Final Kalman filtered image 
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PART V. NDE X-RAY IMAGE MODELING AND ADAPTIVE FILTERING CONSIDERING 

CORRELATED NOISE 
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A B S T R A C T  

A technique for modeling and adaptive filtering with consideration 

of colored noise was developed to increase the contrast of NDE X-ray 

images. It can be statistically shown that noise limiting the 

thickness sensitivity of an NDE X-ray image is spatially correlated. 

This knowledge supports an AR representation of noise. The noise model 

and statistics of a noisy image are used to find an AR signal model. 

Signal and noise models can be transformed to state-space forms which 

represent an image. This image representation is closer to a practical 

situation than that for a white noise assumption. Incorporated with 

the image model, a Kalman filter is used to enhance the image by 

optimally separating the signal and noise processes. In this case, 

colored noise is modeled as well as the signal in the Kalman filter 

equations. Since we used a fast computation method and took advantage 

of a recursive property, it was possible to incorporate a colored noise 

model in the Kalman filter without significantly increasing the 

computation time. It takes about one minute (not including l/o time) 

of VAX 11/780 CPU time to filter a 200x200 image with a second order 

Kalman filter, which can be comparable to or even less than the 

computation time of many simple smoothing algorithms. 
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INTRODUCTION 

Four main factors limiting the quality of an industrial X-ray 

radiographic image are unsharpness, quantum fluctuation, film-grain 

noise and film contrast [Halmshaw, 1973; 1982]. Unsharpness blurs 

details of an image, film contrast limits the dynamic range of an 

image, and quantum fluctuation and film-grain noise smear the fine 

structure of a specimen and reduce the contrast of an image. The 

effects of these factors degrading the quality of an X-ray image are 

well discussed in several books [Halmshaw, 1982; Herz, 1969; Dainty and 

Shaw, 1974]. 

Techniques for reducing the quantum fluctuation and the film-grain 

noise have been studied by Kuan et al. who developed an adaptive 

smoothing filter to reduce the signal-dependent film-grain noise [Kuan 

et al., 1985], by Naderi and Sawchuk who developed an adaptive 

estimation filter, based on a discrete Wiener filter, to restore an 

image degraded by film-grain noise [Naderi and Sawchuk, 1978], and by 

Basart et al. who used an adaptive regional Kalman filter to remove 

the quantum fluctuation in industrial-radiographic X-ray images [Basart 

et al., 1987]. 

In this work, an adaptive Kalman filtering technique is developed 

to remove noise fluctuation caused by film-grain noise, quantum 

fluctuation, and film dirt of industrial-radiographic X-ray images. 

With this technique, knowledge of a radiographic X-ray image forming 

mechanism is employed to obtain Autoregressive (AR) models of an image. 
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The AR representation of an image is written in a state-space form and 

then incorporated into a Kalman filter that enhances an image by 

optimally separating a noise-free image process from a noise process. 

Since the image model of this technique closely represents a real 

image, a better estimation of an image can be obtained than that of 

many other methods. It can be shown that the adaptive filtering 

schemes given by [Kuan et al., 1985] and [Basart et al., 1987] are 

special cases of this technique. In addition, since the Kalman filter 

recursively processes data, the execution speed of this method is fast. 

The computation time is comparable to that of many simple smoothing 

algorithms. 
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X-RAY RADIOGRAPHIC IMAGE MODELING 

To meet the objective of removing noise fluctuation, the image 

forming mechanism must be studied and modeled. An X-ray image forming 

mechanism is a very complicated optical and chemical process. Various 

efforts have been made to obtain proper mathematical descriptions of 

this process [Halmshaw, 1973; 1982; Dainty and Shaw, 1974; Gray, 1988; 

Higgins and Stultz, 1959]. A highly accurate and complete description 

may cause difficulty when one tries to derive a practical restoration 

scheme for an image. Therefore, a simple and reasonably accurate model 

is desired. 

Let a class of X-ray radiographic images be characterized by a 

discrete real-valued finite random field X = {X^j; l<i<N]^, l<j<N2}. A 

realization of this field is x = {x^j; l<i<N2, l<j<N2} where x^j is an 

intensity value at pixel (i,j) of a specific image. Assuming that the 

film is processed in the linear region of the D-logE curve and ignoring 

the blurring effect, a realization of the observation field can be 

represented by [Kuan et al., 1985; Naderi and Sawchuk, 1978; Huang, 

1966] 

y(i,j) = x(i,j) + vjCi.j) (5.1) 

where 

vj^(i,j) = k f(x(i,j)) V2(i,j). (5.2) 
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the term vj is signal-dependent film-grain noise with a Gaussian 

distribution N(0,k^(x(i,j))^^^). The function f(x(i,j)) indicates that 

vi(i,j) is signal-dependent noise. vgCi.j) is iid(0,l), and k is a 

factor related to a ratio of a mean film-grain size to the size of a 

scanning aperture of a digitization system. Film-grain noise refers to 

a natural statistical fluctuation of randomly distributed silver 

particles. A measurement of this fluctuation is also given by Selwyn's 

law [Selwyn, 1939; 1959]. In general, film-grain noise is spatially 

correlated [Dainty and Shaw, 1974], but the correlation distance is 

often very short compared to the scanning aperture size of a 

digitization system. Readers should notice that there is a confusion 

about this equation in the literature given by Huang and Kuan et al. 

[Kuan et al., 1985; Huang, 1966]. They represented V]^(i,j) by 

1/3 
k(x(i,j)) vgCi,]). If we treat x(i,j) as a random variable, the 

variance of v^Ci,]) obtained from their representation will be 

2 1/3 
different than that mentioned above, K (x(i,j)) 

equation (5.1) is very important because it reveals the relation 

between the optical density and the film-grain noise. However, Naderi 

and Sawchuk showed that equation (5.1) is not accurate enough to 

simulate the noise fluctuation of a real X-ray radiographic image 

[Naderi and Sawchuk, 1978]. The noise fluctuation generated by 

equation (5.1) has a fine granular salt and pepper appearance, whereas 

the noise is smooth in a real X-ray image. Thus a model including 

blurring effects was considered and proved to be more accurate than 
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equation (5.1) [Naderi and Sawchuk, 1978]. Several blurring factors 

are accumulated in this new model. If we ignore the blurring due to 

scattering and atmospheric turbulence, and introduce an additional term 

for quantum fluctuation in this new model, the observation model can be 

represented as 

i+M j+N 
y(i,j) = Z Z [x(k,l) + vi(k,l) + vgCk,!)] b(k,l) (5.3) 

k=i-M l=j-N 

where V3(i,j) is the quantum fluctuation due to random quanta emission 

and absorption [Halmshaw, 1982], and b(i,j) is a point-spread function 

accounting for the blurring factors of chemical diffusion and adjacency 

effects during the film development, and the blurring factors due to a 

digitization system. M and N are determined by the width of the 

unsharpness. To completely solve equation (5.3) for x(i,j), a 

deconvolution method considering the blurred noise term should be 

developed. Alternatively, the blurred noise term can be removed first 

and a straight deconvolution method then used to estimate x(i,j). The 

latter method is more useful when the processed image has a very low 

signal-to-noise ratio. The method used in this work to remove the 

blurred noise term is a model-based adaptive filter. To do this, we 

collect data into an one-dimensional array for simplicity by raster 

scanning. Thus, the observation equation becomes 

y(t) = s(t) + v(t) + n(t) (5.4) 
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where s(t) = ZZ x(k,l)b(k,l) and v(t) = ZZ [v]^(k, l)+v3(k,l)]b(k,l). 

All terms in equation (5.4) have a similar meaning to the terms in 

equation (5.3) except for the dimensions and an extra term n(t). n(t) 

is introduced to include effects contributed by dirt on the film and 

noise of a digitization system [Higgins and Stultz, 1959]. n(t) is 

2 Gaussian white noise with a zero mean and a variance of A one-

dimensional approach is used in this work to simplify the restoration 

scheme and to increase the execution speed of the program running on a 

digital computer. A two-dimensional approach may be developed in a 

future investigation. 

Since v(t) is formed by blurring vjCi.j), v(t) is spatially 

correlated with a correlation distance larger than the window size of a 

point-spread function which in turn is larger than the correlation 

distance of vl(i,j). Our analysis also shows that the noise 

fluctuation of an X-ray image is spatially correlated [Zheng and 

Basart, 1988]. Because s(t) and v(t) are each an autocorrelated 

process, they can be approximately represented, without loss of 

generality, as AR(p) and AR(q) models, respectively 

P 
s(t) = Z ^£s(t-i) + wi(t) 

i=l 
(5.5) 

and 

q 
v(t) = Z giv(t-i) + W2(t) (5.6) 

i=l 
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2 2 
where Wj^(t) is iid(0,a%^) and W2(t) is iid(0,a%^). The mean of s(t) 

should be removed before modeling; otherwise, there is a constant term 

in equation (5.5). equations (5.5) and (5.6) show that s(t) and v(t) 

can be related to their weighted neighboring points by 0^ and 6^ plus 

uncorrelated normally-distributed residuals. AR modeling theory can be 

found in many textbooks [Fuller, 1976; Abraham and Ledolter, 1983; 

Graupe, 1984; Box and Jenkins, 1976; Pankratz, 1983]. 

Coefficients and 6^ can be found by the autocovariance of s(t) 

and v(t). For instance, p linear equations can be formed by finding 

the autocovariance of equation (5.5) from lag 1 to lag p (assuming that 

the mean of s(t) is zero) 

P 
E[s(t)s(t-h)] = 2 E[s(t-i)s(t-h)] 1 < h < p (5.7) 

i=l 

which is 

P 
C_(h) = Z 0; C_ (|i-h|) 1 < h < p (5.8) 

i=l 

where E[***] is the mathematical expectation operator and Cg(h) is the 

autocovariance of s(t) at lag h since E[s(t)]=0. equation (5.8) can be 

written in a matrix form as 

Cg(0) Cgd) ... Cg(p-l) 
Cgd) Cg(2) ... Cg(p-2) 

C g ( p - l )  .  . . .  C g ( 0 )  

•
 

II 

C g d )  

C s ( 2 )  

. 
. 

C g ( p )  
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equation (5.9) is called the Yule-Walker equation [Box and Jenkins, 

1976] that can be iteratively solved for [Levinson, 1947; Jayant and 

Noll, 1984]. The coefficients 9^ can be obtained by a similar method. 

A process modeled by an AR model should be at least wide-sense 

stationary [Fuller, 1976]. An N x N running window, which is much 

smaller than the size of the image, is used in the raster scanning to 

obtain an approximately wide sense stationary sample sequence. For 

each running window, autocovariances of s(t) and v(t) have to be found 

before the Yule-Walker equation is solved. The autocovariance of 

equation (5.4) is 

where Cy(h) and Cy(h) are autocovariances of y(t) and v(t), 

respectively, and 5(h) is a delta sequence. The cross terms Cgj^(h) and 

Cyn(h) are zero due to E[s(t)n(t-h)]=0 and E[v(t)n(t-h)]=0. The cross 

terms Cgy(h) is zero due to E[s(t)v2(t-h)]=0 and E[s(t)v3(t)]=0. C y(h) 

2 
is calculated from observations, and is specified for a certain 

degree of dirt on the film and the quality of a specific digitization 

system. For simple and practical proposes, in our method Cy(h) is 

first estimated (call it C^Q) in a flat area of an image, and is then 

calibrated for each running window by an empirical formula; 

C y ( h )  =  C g f h )  +  C y ( h )  +  a J s C h )  0 < h (5.10) 

Cy(h) = ki(t)Cyo(h)Cy(h)/(Cymk2) (5.11) 
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where ki(t) is a nonlinear term related to the optical density, Cy^ is 

the variance of an entire image, and k2 is a constant which is higher 

than 1.0 and related to signal-to-noise ratio. k^Ct) varies from 0.8 

to 1.2, corresponding to an optical density region of 1.5 to 3.5, 

respectively. Finally, knowing C^Ch), Cy(h), and Cg(h) can be 

obtained by equation (5.10). Every estimated variance, where h=0, must 

be semi-positive definite [Fuller, 1976]; if not, it should be forced 

to be semi-positive definite. 
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IMAGE ESTIMATION BY ADAPTIVE KALMAN FILTERING 

An adaptive Kalman filtering technique is applied to estimate s(t) 

with known y(t) in equation (5.4). A Kalman filter can separate two or 

more stochastic processes whose spectra overlap. The separation is 

done by the least-squares error criterion. The conditions for applying 

a Kalman filter for such separation are that the first and the second 

order statistics of each stochastic process are known and the processes 

are linearly additively mixed. The known factors for this condition 

can also be power spectral forms or stochastic difference equations (AR 

models) of the processes. Kalman filter theory is introduced in many 

sources [Kalman, 1960; Kalman and Bucy, 1961; Brown, 1983; Gelb, 1974]. 

Applications of Kalman filtering for image restoration can be found in 

many sources [Woods and Radewan, 1977; Suresh and Shenoi, 1981; Rajala 

and de Figueiredo, 1981 Dikshit, 1982; Biemond et al., 1983; Tekalp et 

al., 1986]. 

Since an entire image is generally a nonstationary process, the 

above modeling procedure is based on an NxN running window in which the 

process is approximately wide sense stationary. Thus, parameters of a 

Kalman filter vary from window-to-window, and the Kalman filter is 

adapted to local features of an image. For each window, the p states 

are denoted as {x^; i=l,2, ..., p} for s(t) and q states as {xp+j(t); 

j=l,2,...,q} for v(t). Then, system equations (5.5) and (5.6) can be 

written as 
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Xi (t) 
X2(t) 

<t>l 

02 
l(p-l) 0(p,q) 

Xp(t) 
= 

0 ... 0 

Xp+l(t) 
0(q,p) 

^1 

^2 
l(q-l) 

''p+q^ ̂ ) < 0 ... 0 

xi(t-1) 
Xgift-l) 

Xp(t-l) 

Xp+i(t-0 
Xp+2(t-l) 

w (t) 

„,(t) 

and the observation equation (5.4) can be represented as 

y(t) = [1 0 ... 0 1 0 ... 0][xi(t) ... Xp+i(t) ... Xp+q(t)]^ 

+ n(t) 

(5.12) 

(5.13) 

where 0(q,p) and 0(p,q) are q x p and p x q zero matrices, 

respectively. l(p-l) and l(q-l) are (p-l) x (p-1) and (q-l) x (q-l) 

identity matrices, respectively. It can be shown that xj^(t)=s(t) and 

Xp+]^(t)=v(t) and equation (12) are equivalent to equations (5,5) and 

(5.6), and that equation (5.13) is equivalent to equation (5.4). 

equations (5.12) and (5.13) can also be written as 

c(t) = $(t) x(t-l) + w(t) (5.14) 

and 

y(t) = H(t) x(t) + n(t) (5.15) 
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where x (t) is a ((p+q) x l) process state vector at lag t, ^(t) is a 

((p+q) X (p+q)) state transition matrix, w(t) is a ((p+q) x l) white 

driving vector, and H(t) = {h^; i=l,2,...,p+q} in which h^(t)=0 except 

for hi(t)=l and hp+2(t)=l. The covariance matrix for w(t) is denoted 

by Q(t) = {Qij(t); l<i<p+q, l<j<p+q} in which Q|j(t)=0 except for 

2 2 
Qll(t) = 0^2 and Q(p+i)(p+i) = o^2' variance of n(t) is denoted by 

2 R and R=cr^. 

Assuming that an estimated state vector is denoted by x(t|t), a 

Kalman filter estimates x(t|t) by minimizing the individual terms along 

the major diagonal of the estimation error covariance matrix 

P(t|t) = E[(x(t)-x(tIt))(x(t) - x(t|t))^] (5.16) 

where the elements along the major diagonal represent the estimation 

error variances for the states. With the above definitions and known 

quantities, a Kalman filter estimates x(t) by the following recursive 

procedure [Brown, 1983]: 

1. Enter the recursive loop with an initial a priori state 

vector x(t|t-l) and an a priori error covariance matrix 

P(t|t-1). 

2. Compute a Kalman gain vector 

K(t|t) = P(t|t-1)H'̂ [H P(t|t-1)Ĥ +R]~^ (5.17) 

3. Estimate a state vector 

x (t|t) = x (tlt-l) +K(t|t)[y(t) - H x (t|t-1)] (5.18) 
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4. Evaluate the error covariance matrix 

P(t|t) = [ l - K(t|t) H ] p(t|t-l) (5.19) 

5. Predict the next state vector and the error covariance 

matrix 

x(t+lIt) = $(t)x(tIt) (5.20) 

P(t+l|t) = $(t)P(t|t)*^(t) + Q(t) (5.21) 

This process is iterated from the first sample to the last sample in a 

running window from step 2 to step 5. Then, this procedure is repeated 

for another running window until all samples of an image are processed. 

The recorded X]^(t|t) is an estimation of s(t) which forms an enhanced 

image. The recorded Xp+i(t|t) is an estimation of v(t) which forms a 

noise image. In this case, noise v(t) is treated as a signal process 

and the enhancement is done by optimally separating the two processes. 
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ENHANCING INDUSTRIAL RADIOGRAPHIC X-RAY IMAGES 

The above modeling and filtering techniques have been applied to 

enhance low-contrast noisy industrial radiographic X-ray images. The 

image shown in Figure 5.1(a) is digitized from a radiograph of a weld 

from the Martin Marietta Cooperation. The digitization system 

represents an image with an 8-bit intensity resolution and a 480 x 512 

frame size. A subimage of size 256 x 256 representing a physical area 

2 
of 8.2 X 8.2 mm was used for enhancement. The image shown in Figure 

5.1(a) has low contrast with the flaws barely visible. The maximum 

flaw size in the images is about 1.5x0.5 mm2. The background trend was 

removed from the images [Doering and Basart, 1988]. If we define a 

signal-to-noise ratio as 

I peak of flaw - mean of an image| 
S/N , (5.22) 

standard deviation of noise 

the s/N of Figure 5.1(a) is about 2.8. A slice plot of Figure 5.1(a) 

from point (108,l) to point (108,256) is shown in Figure 5.1(b) where 

(1,1) is at the lower left corner of the image. CyQ(O) and CyQ(l) were 

measured from the top right corner in a box (220,200)x(250,250), to be 

29.2 and 14.1, respectively. Cy^ is about 53.3 and k2 is 1.2. AR(1) 

processes were used to describe s(t) and v(t). was assumed as 0.6. 

, 6-^, Cy(h), Cg(h), and Q(t) were automatically computed for each 

running window. Then, a bank of second order Kalman filters was used 

to estimate s(t). The size of the running window was 8x8 with the 
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center 4x4 pixels among processed pixels were saved as the estimated 

s(t). The output of the Kalman filter was normalized to a range of 256 

gray levels. The image of the estimated s(t) is shown in Figure 5.2(a) 

and the slice plot from point (108,1) to point (108,256) is shown in 

Figure 5.2(b) which can be compared to Figure 5.1(b). The contrast in 

Figure 5.2(a) is noticeably higher than that of Figure 5.1a. Since the 

Kalman filter enhances an image by separating processes, which is 

conceptually different than a smoothing method, the background noise of 

Figure 5.2(a) is still present but with a remarkably-reduced 

fluctuation level. This can also be verified by the comparison between 

Figure 5.1(b) and Figure 5.2(b). The S/N of Figure 5.2(a) is about 

7.2. From the enhanced image, one can easily find flaws, and possibly 

define sizes of the flaws if the blurring is not severe. Many image 

analysis methods such as edge detection and feature extraction can then 

be applied to enhanced images [Zheng and Basart, 1988]. 

T h e  a l g o r i t h m  w a s  i m p l e m e n t e d  o n  a  V A X  11/780 c o m p u t e r  w i t h  

F O R T R A N .  B e c a u s e  a  K a l m a n  f i l t e r  h a s  a  r e c u r s i v e  p r o p e r t y ,  i t  c a n  b e  

r e l a t i v e l y  f a s t  i f  t h e  o r d e r  o f  t h e  K a l m a n  f i l t e r  i s  n o t  t o o  h i g h .  

W i t h o u t  c o u n t i n g  l / O  t i m e ,  t h e  CPU t i m e  u s e d  t o  f i l t e r  a  256x256 i m a g e  

w a s  a b o u t  t w o  m i n u t e s  w h i c h  i s  c o m p a r a b l e  t o  t h a t  o f  m a n y  s m o o t h i n g  

t e c h n i q u e s .  
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(a) (b) 

Figure 5.1. An X-ray radiograph of a weld from Martin Marietta 
Corporation, (a) A digitized NDE radiographic X-ray 
image, (b) A slice through the plot in (a) from point 
(108,1) to point (108,256) 

Figure 5.2. An image enhanced by the Kalman filtering, (a) An 
enhanced image from Figure 5.1(a), (b) A slice through the 
plot in (a) from point (108,1) to point (108,256) 
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PROBLEM DEFINITION 

The earth's atmosphere plays a significant role in both optical 

and radio astronomy. The precision with which the position and sizes 

of radio sources can be determined is ultimately limited not only by 

the size of the telescopes but also by atmospheric effects. As is well 

known, the radio interferometer and antenna array synthesis techniques, 

such as the VLA (Very Large Array) [Napier et al., 1983], have greatly 

improved the resolution of radio source observations. Resolution 

increases as the baseline (separation between antennas) of the 

interferometer increases. An interferometer or correlation array 

measures the Fourier transform form of a radio source's brightness 

distribution. This transform is called the complex visibility. The 

phase of the complex visibility carries very important information 

about the structure and location of the source. Unfortunately, the 

phase is distorted due to many factors. The most important of these is 

the earth's atmosphere; the nonhomogeneity of the refractive index of 

the atmosphere causes the phase to fluctuate in an analytically 

unpredictable manner. This phase distortion smears the radio image and 

limits an instrument's performance. Long spatial baselines are 

required to obtain high resolutions, but as the geometrical baseline 

and the sky frequency increase, the phase fluctuation also increases 

[Armstrong and Sramek, 1982]. In the worst case, the phase information 

of the visibility data becomes useless. 
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STANDARD CORRECTION TECHNIQUES 

Because of the stochastic property of the phase, restoration of 

the phase becomes very difficult. However, if we observe a point 

source, the phase fluctuation can be found. Employing this idea, 

empirical calibration [Hjellming, 1982] and self-calibration [Schwab, 

1980] techniques have been developed. Empirical calibration provides 

the long-run correction, and self-calibration offers short time scale 

correction. The realizations of these two techniques are based on 

various assumptions. The assumption for the calibration is that the 

phase fluctuation is close to being wide-sense stationary, and the 

assumption for the self-calibration is that the final image (a 

deconvolution result [Hogbom, 1974]) contains one or more point-like 

sources or good models. Practice has shown that self-calibration works 

efficiently to improve the phase data for moderate amounts of 

atmospheric variation. But if the phase fluctuation is severe, the 

calibration cannot provide good initial corrections and the 

deconvolution cannot provide good point-like components; as a result, 

self-calibration cannot perform well and the image will still be fuzzy. 
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ARIMA MODELING AND KALMAN FILTERING METHOD 

We are developing a new technique to reduce the phase fluctuation. 

Our approach combines ARIMA modeling theory [Box and Jenkins, 1976; 

Pankratz, 1983], recursive Kalman filtering theory [Kalman, 1960; 

Brown, 1983], and existing astronomical data processing algorithms. 

There are several reasons for taking this approach: 

1. The stochastic property of the phase can be incorporated. 

2. The phase is highly correlated in time order. 

3. ARIMA models are optimal models for stochastic processes and 

the Kalman filters are optimal linear filters for random 

signals. 

4. The ARIMA modeling procedure and the Kalman filtering 

processing can be realized with a digital computer. 

The correlated components in the data can be extracted by 

reasonable mathematical representations of the data. The remaining 

components are considered to be the uncorrelated components. Knowledge 

of these two components is necessary for a stochastic filtering 

process. In order to obtain these two components, we have applied the 

Box-Jenkins modeling method to the VLA phase data. The modeling 

outputs are ARIMA processes which represent VLA phases. Then the 

spectral form of an ARIMA model can be estimated so that conventional 

spectral analysis and signal processing algorithms can be used. In 

addition, an ARIMA representation can be easily transformed to state-

space form so Kalman filters can be utilized for the phase correction. 
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Our preliminary testing and simulation work show that the phase error 

can be reduced by Kalman filtering, resulting in an improved image. 
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COMPUTATIONAL TIME PROBLEM 

There is a computational time problem in applying our modeling and 

filtering method to the VLA data. In the VLA, there are 4*351 channels 

to produce the complex visibility data and there are several hundred 

averaged samples to be generated in each channel. In order to process 

these data, the following routines are necessary: 

1. Recursive Kalman filter routine. This includes a series of 

matrix operations such as multiplication and addition. The 

orders of matrices depend upon the order of the models. 

2. ARIMA model identification and estimation routines. They 

include autocorrelation function, cross-correlation 

function, and partial autocorrelation function estimations. 

They also include non-linear least squares estimation, 

prediction, and many statistical tests such as t-test, chi-

squared, and normal goodness test. 

3. Data base manipulation and data pre-processing routines. 

They include data fetching and storing, and a variety of 

data transformations and segmentation. 

For each data point, the filter routine executes 10 matrix or 

vector-matrix multiplications, 5 matrix additions or subtractions and 

one matrix inversion. Suppose we only consider one measurement at a 

time, then the matrix inversion and half of the matrix or vector-matrix 

multiplications become scalar operations. Assuming that we have a data 

set which contains 3 hours of observations, with each sample being an 
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average over 20 seconds, we will then have 758,160 samples for the 

4*351 channels. To filter these data, we have to finish more than 2.2 

million matrix multiplications, about 1.5 million vector-matrix 

multiplications, about 1.5 million matrix additions, and about 3.8 

million scalar multiplications. If the order of the matrices, which is 

the order of a Kalman filter, is chosen as 4, the execution time (CPU 

time) for filtering these data will be about two and one-half hours in 

the VLA DEC-10 computer. If we use adaptive Kalman filters, which may 

be necessary, the number mentioned above will be increased by many 

times. In addition, the model identification and estimation routines 

contain thousands of computations of autocorrelation functions and 

partial-autocorrelation functions, and include more than 5.6 thousand 

parameter estimations based on a non-linear least squares method. 

Because a large amount of CPU time is required and there are many 

repetitive programs to processing a large amount of data in the VLA, 

this modeling and filtering processing is limited in the present VLA 

computer system. Under the aid of a supercomputer, this problem can be 

solved. 
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OPTIMIZATION AND VECTORIZATION OF THE KALMAN FILTERING ROUTINE ON THE 

BCS CRAY X-MP/24 COMPUTER 

For experimental purposes, we ran the Kalman filtering routine 

with a small data set, which contains 44,850 samples, in both the VLA 

DEC-10 computer and the BCS (Boeing Computer Services) CRAY X-MP/24 

computer. The DEC-10 has 768 kilo-words of main memory, a 36-bit word 

length, and 2.5 MIPS. The CRAY X-MP/24 has 4 million words of main 

memory, a word length of 64 bits, a 9.5 ns CPU cycle time and a peak 

vector operation rate of 200 MFLOPS (78 MFLOPS for the BCS CRAY X-MP 

[Kenneth, 1985]). The job mentioned above took 323.27 seconds of CPU 

time in the DEC-10 computer while it took only 29.69 seconds in the BCS 

CRAY X-MP/24. (if we access the data base in a normal manner, this job 

will take 544.96 seconds of DEC-10 CPU time). The speed-up factor is 

10.9. After we applied the optimization and vectorization techniques, 

the running time in the latter machine was reduced to 9.85 seconds, 

providing a speed-up factor of 32.8. The speed-up factor of the 

optimization and vectorization is about 3. Of the total execution time 

on the CRAY X-MP, the pure computational time (without counting the l/O 

operation time) was reduced from 22.79 seconds to 2.95 seconds by the 

optimization and vectorization. 

A supercomputer like the CRAY X-MP/24 usually has a vector 

processing architecture such that its high performance is largely 

dependent upon the structure of the program run on the machine. It is 

a waste of resources to use a vector processor as a scalar machine. 
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A general phenomenon for many data processing programs is that a 

high percentage of the total computation time may be spent in several 

DO loops (with only a few statements) no matter how large and how 

sophisticated a program may be. Finding these DO loops and performing 

optimization and vectorization of them is crucial in obtaining 

efficient program operation [Boeing Computer Services, 1984]. We have 

employed the following three major strategies to optimize and vectorize 

our filtering program: 

1. Optimization with the application software and computational 

kernals. Since the computational kernals are written in 

assembly language, they have higher execution speed than 

those written in high-level languages. We used HSMMPS and 

SDOT subroutines of the BCS's Vectorpack [Boeing Computer 

Services, 1985] to replace the original matrix and vector-

matrix multiplication FORTRAN source codes. The computation 

time of the associated codes was reduced from 13.0 seconds 

(53% of the total execution time) to 2.5 seconds (only 13% 

of the overall execution time). 

2. Vectorization by restructuring the program. The essential 

principle of vectorization is variable independence. In 

order to vectorize our program, we restructured the filter 

program in both the global and local senses. Global 

reconstruction means that we changed the basic structure of 

the entire program and local reconstruction means that we 
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vectorized each DO loop. The candidate loops for 

vectorization should not contain l/O, GOTO, IF, and CALL 

statements, and should have no dependency involving an array 

or non-linear reference to memory. In this step, we 

obtained a 3.92 second reduction in run time. 

3. Reducing the depth of the subroutines. In order to make 

clean program structures, some programmers employ a lot of 

subroutines. However, there are initiation operations 

required to invoke a subroutine. If a subroutine is called 

thousands or millions of times, the overhead time used for 

the initiation cannot be ignored. In the extreme case, a 

high order depth of subroutines may cause the program to be 

unexecutable. The subroutine depth of our original routine 

is 3. The subroutines in the bottom level are called 5 

times for processing one sample. The execution time of 

those subroutines is about 3.0 seconds but the overhead time 

is 5.437 seconds. We reduced the depth from 3 to 2 by 

replacing 5 CALL statements with the associated source 

codes. The revised program became long and the structure is 

not as clear, but the overhead time was reduced to 0.032 

seconds, which is only 0.6% of the original overhead time. 

Overall, the results of the benchmark testing is shown in the 

table below. 
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Table 6.1. Computer Performance 

P e r f o r m a n c e  I m p r o v e m e n t :  DEC-10 v e r s u s  BCS CRAY X - M P  

DEC-10 BCS CRAY X - M P  S p e e d u p  F a c t o r  

323.27 s e c .  (*) 29.69 s e c .  10.9 

323.27 s e c .  (**) 9.85 s e c .  32.8 

w i t h o u t  v e c t o r i z a t i o n  a n d  o p t i m i z a t i o n  

w i t h  v e c t o r i z a t i o n  a n d  o p t i m i z a t i o n  
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CONCLUSION 

The development of our modeling and filtering method is limited by 

the computation time and memory size. This problem can be solved with 

the aid of a supercomputer. Our experimental results show that the 

execution of our filtering program, which was optimized and vectorized, 

on the BCS CRAY X-MP/24 is 32.8 times faster than that on the VLA 

DEC-10 computer. This encourages us to develop an adaptive Kalman 

filtering procedure for the VLA image processing. In order to take 

advantage of vector processing machines, the program should be 

vectorized. Those standard routines of the AIPS package at the NRAO 

such as CALIBRATION, CONVOLUTION, DECONVOLUTION and 2D-FFT are very 

good candidates for optimization and vectorization on a supercomputer 

such as a CRAY computer. 
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ABSTRACT 

A  m a x i m u m  e n t r o p y  d e c o n v o l u t i o n  m e t h o d  i s  s t u d i e d  a n d  a p p l i e d  t o  

i n d u s t r i a l  N o n - D e s t r u c t i v e  E v a l u a t i o n  ( N D E )  i m a g e s  a n d  i n f r a r e d  ( I R )  

i m a g e s .  O n e  o f  t h e  f a c t o r s  l i m i t i n g  t h e  q u a l i t y  o f  t h e s e  i m a g e s  i s  

u n s h a r p n e s s .  U n s h a r p n e s s  i s  c a u s e d  b y  a  b l u r r i n g  p r o c e s s  w h i c h  m a y  b e  

m o d e l e d  b y  a  c o n v o l u t i o n  o f  a n  i m a g e  w i t h  a  p o i n t - s p r e a d  f u n c t i o n  

(PSF). A p r a c t i c a l  M a x i m u m  E n t r o p y  M e t h o d  ( M E M )  i s  d e v e l o p e d  t o  

d e c o n v o l v e  P S F  f r o m  i m a g e s .  T h e  M E M  s o l u t i o n  i s  o b t a i n e d  b y  m a x i m i z i n g  

2 
t h e  e n t r o p y  o f  a  r e c o n s t r u c t e d  i m a g e  c o n s t r a i n e d  b y  t h e  x s t a t i s t i c  

w h i c h  d e s c r i b e s  t h e  m i s f i t  b e t w e e n  t h e  r e s t o r e d  i m a g e  a n d  t h e  o b s e r v e d  

2 
i m a g e s .  A  d i r e c t  c o n v o l u t i o n  i s  u s e d  t o  f i n d  t h e  x s t a t i s t i c  f o r  

n a r r o w  P S F s  a n d  t h e  F F T  i s  u s e d  f o r  w i d e  P S F s .  I f  t h e  F F T  m e t h o d  i s  

u s e d  t o  e v a l u a t e  t h e  c o n v o l u t i o n ,  t w o  F F T s  a r e  r e q u i r e d  i n  e a c h  

i t e r a t i o n .  A  N e w t o n - R a p h s o n  a p p r o a c h  i s  u s e d  t o  f i n d  a  c o n d i t i o n a l  

e x t r e m u m  o f  t h e  e n t r o p y  e q u a t i o n  s u b j e c t  t o  c o n d i t i o n s  e n f o r c e d  b y  

L a g r a n g e  m u l t i p l i e r s .  T h i s  M E M  i s  a p p l i e d  t o  N D E  X - r a y  r a d i o g r a p h i c  

i m a g e s  a n d  i n f r a r e d  ( I R )  i m a g e s .  
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I N T R O D U C T I O N  

N D E  i m a g e  f o r m i n g  m e c h a n i s m s  d e g r a d e  i m a g e s  b y  c a u s i n g  u n s h a r p n e s s  

a n d  n o i s e  c o r r u p t i o n  [ H a l m s h a w ,  1973; 1982; H e r z ,  1969; D a i n t y  a n d  

S h a w ,  1974; Z h e n g  a n d  B a s a r t ,  1988a; 1988b]. U n s h a r p n e s s  b l u r s  e d g e s  

a n d  d e t a i l s  o f  a n  i m a g e  w h i l e  n o i s e  d e c r e a s e s  t h e  c o n t r a s t .  T h e r e  a r e  

t w o  m a i n  f a c t o r s  c a u s i n g  u n s h a r p n e s s  o f  X - r a y  r a d i o g r a p h i c  i m a g e s .  O n e  

f a c t o r  a r i s e s  f r o m  t h e  f i n i t e  s i z e  o f  t h e  r a d i a t i o n  s o u r c e ,  w h i c h  i s  

n e v e r  a n  i d e a l  p o i n t  s o u r c e .  I t  c a u s e s  a n  e f f e c t  a n a l o g o u s  t o  a  

p e n u m b r a  i n  v i s i b l e  l i g h t ;  a  s h a r p  e d g e  o f  a  s p e c i m e n  i s  b l u r r e d  i n  a n  

o b s e r v e d  i m a g e .  A n o t h e r  f a c t o r  c a u s i n g  u n s h a r p n e s s  i s  t h e  s c a t t e r i n g  

o f  e l e c t r o n s  i n  t h e  f i l m  e m u l s i o n .  T h e  f a c t o r  c a u s i n g  u n s h a r p n e s s  o f  

I R  i m a g e s  i s  t h e  d i f f u s e  r a d i a t i o n  c a u s i n g  a  s h a r p  e d g e  t o  b e  f u z z y  i n  

t h e  r e c o r d e d  i m a g e .  N o i s e  d e g r a d i n g  t h e  c o n t r a s t  i s  c o n t r i b u t e d  b y  

r a n d o m  p h o t o n  e m i s s i o n  a n d  a b s o r p t i o n  p r o c e s s e s  i n  a  s p e c i m e n ,  a n d  

r a n d o m  p r o c e s s e s  i n  d e t e c t i o n  d e v i c e s .  T h e s e  d e g r a d i n g  f a c t o r s  w i l l  

b l u r  e d g e s  o f  a n  i m a g e ,  o b s c u r e  d e t a i l s ,  a n d  r e d u c e  c o n t r a s t .  S i n c e  

i n f o r m a t i o n  a b o u t  e d g e s ,  d e t a i l s ,  a n d  c o n t r a s t  i s  i m p o r t a n t  f o r  

q u a n t i t a t i v e  N D E  w o r k ,  e f f e c t i v e  i m a g e  e n h a n c e m e n t  a n d  i m a g e  

r e s t o r a t i o n  m e t h o d s  m u s t  b e  d e v e l o p e d  f o r  t h e  N D E  c o m m u n i t y .  

T h i s  w o r k  i n t r o d u c e s  a  p r a c t i c a l  M a x i m u m  E n t r o p y  M e t h o d  ( M E M )  f o r  

r e s t o r i n g  N D E  X - r a y  r a d i o g r a p h s  a n d  i n f r a r e d  i m a g e s .  M E M  h a s  b e e n  

d e v e l o p e d  a s  a  p o w e r f u l  t o o l  f o r  b o t h  i m a g e  r e c o n s t r u c t i o n  a n d  i m a g e  

r e s t o r a t i o n .  I t  h a s  b e e n  s u c c e s s f u l l y  a p p l i e d  i n  a s t r o n o m i c a l  i m a g e  

processing [Frieden and Swindell, 1976; Wernecke and D'Addario, 1977; 
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Gull and Daniell, 1978; Skilling et al., 1979; Bryan and Skilling, 

1980; G u l l  a n d  S k i l l i n g ,  1984; S k i l l i n g  a n d  B r y a n ,  1984; S k i l l i n g  a n d  

Gull, 1985; Cornwell and Evans, 1985]. It has been applied in other 

areas such as radiographs [Burch et al., 1983], and tomography 

[Minerbo, 1979]. These applications have demonstrated that MEM is a 

superior technique for producing optimal restorations of images from 

blurred, incomplete, and noisy data. The restored images have fewer 

artifacts, better edge definition, and more clear details than images 

restored by traditional linear methods [Burch et al., 1983]. 

This work is based on the developments by Burch et al. [1983], and 

Cornwell and Evans [1985]. Our method uses the entropy measure 

-Zplogp of an image. The misfit between the reconstructed image and 

2 
the observed image is measured by the x statistic, which gives a 

measure of consistency with the observed image. The MEM image is 

2 
obtained by maximizing the entropy with the condition that x 

approaches an expected value enforced by a Lagrange multiplier. An 

iterative convergence technique (a multivariable Newton-Raphson method) 

is used for an efficient search finding an extremum of constrained 

entropy. In this method, an approximation for inverting a large-

dimension matrix is made by taking the inverse of the diagonal elements 

of the matrix [Cornwell and Evans, 1985]. A direct convolution is used 

to find the x^ statistic for a narrow point-spread function (PSF) while 

2 
an F F T  is used to find the X statistic for a wide P S F .  In this method 

the PSF must be known or must be measurable from an observed image. 
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Compared to other MEMs this MEM has the advantages of being fast and 

easy to implement. 



www.manaraa.com

161 

T H E  M A X I M U M  E N T R O P Y  M E T H O D  

Let a class of ideal images be characterized by a discrete real-

valued random field. A realization of this field is f ={f£; 0<i<N-l} 

where f^ is an intensity value of a pixel located at i of a specific 

positive additive image to be reconstructed. N is a total pixel number 

in an image. The related observational image is denoted by d ={d£; 

0<i<N-l}. Assuming that the blurring process can be represented by 

convolving f with a known spatially invariant PSF h, the observation 

equation is given by 

N - 1  

dj = Z f; h;_1 + nj (7.1) 
j=0 ^ j 

where the subscripts are in one dimension for simplicity and n^ is a 

2 
noise term with a distribution of iidCO.a^). 

The inverse problem arises when we want to find f^ when given h 

and d. A natural way to approach the solution of this problem is to 

adjust the sequence {f^} until the reconstructed image f is consistent 

with the observed image d with given constraints. Another problem then 

rises: how should we adjust f^ ? The MEM provides a unique answer for 

this problem, which selects f^ in such way as to have much information 

content of an image and least configuration content as possible. The 

measure of information content can be defined by the entropy S of a 

probability distribution [Shannon, 1948]. The entropy of a 

reconstructed image is 
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N-1 
S = - Z p.- log p,-

j=0 
(7.2) 

where pj = fj/2f. Thus, a particular probability distribution of f^ is 

chosen so that f^ fits equation (7.1) by maximizing the entropy S. 

Then, the solution of the inverse problem consists of selecting a 

sequence {f^} that has maximum entropy and is consistent with the 

observational equation under certain constraints. In this case, the 

reconstructed image is called feasible. 

The most simple measure for the difference of (7.1) caused by f^^ 

is the single constraint statistic, 

feasible images which passes the statistical test for consistency. The 

value of Xu is about (N+3.29/N) for 99% confidence [Skilling and Gull, 

1985]. 

Now, the problem becomes a strict conditional optimization 

(7.3) 

2 
where gj^ = Zfjh^-j. The upper bound is determined by the values 

2 2 2 
that X can plausibly take. The condition x - defines the set of 

2 2 
problem: Maximizing S subject to x 3 x^. Thus, as usual for such a 

problem, we can form a Lagrangian function, 

Q = S - Xx^. (7.4) 
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To reduce the bias of the total intensity Zfj, a second constraint with 

another Lagrange multiplier ix is added for the Lagrangian function 

Q  =  S  -  \ x ^  -  w Z f j  ( 7 . 5 )  

With a assumption shown late, the maximization of (7.5) is equivalent 

to maximizing a modified form of entropy [Burch et al., 1983] 

S = - Z fj (log(fj/A) - 1) (7.6) 

2 2 
subject to X S Xu where 

A = exp(Zpjlog fj - wZfj) (7.7) 

is assumed as a predetermined value. Thus the precise value of A has 

no effect to the MEM solutions [Burch et al., 1983]. The solution of 

the conditional extremal equation (7.6) can be found by setting the 

gradient of Q, (VQ)- = 9Q/Sf£, to zero for a suitable Lagrange 

multiplier X 

f£ = A exp{X0x^/9f. (7.8) 

Since entropy is intrinsically nonlinear, a nonlinear optimization 

problem is formed. It is usually solved by an iterative numeric 

method. 
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THE COMPUTATIONAL ALGORITHM 

The optimization problem is to find a root of 

VQ(f) = 0 (7.9) 

where the i-th element of VQ(f) is 0Q/0f£. Since Q is neither linear 

nor quadratic, an iteration approach must be used to continually refine 

f£ starting with a flat image f ={f£=A; 0<i<N-l} until a feasible image 

is obtained. There are several numerical iterative methods available 

to solve equation (7.9) [Skilling and Gull, 1985]. The simplest one is 

steepest ascent, but it is known to be inefficient. The conjugate 

gradient technique can be used to improve steepest ascent algorithm, 

but it requires Q to be quadratic. A method using three search 

directions was shown by Burch et al. [1983] to be powerful, however, 

15-20 iterations with 12 two-dimensional FFTs for each iteration are 

needed. Cornwell and Evans [1985] proposed a simple Newton-Raphson 

method in their MEM for radio source image reconstruction, and, in 

practice, showed it to be effective and fast. It requires two FFTs for 

each iteration. We used a Newton-Raphson method in our MEM even though 

the nature of the objective function (7.4) of the optimization and the 

domains of the observational data are different than the Cornwell-

Evans' method. References for the multivariable Newton-Raphson method 

can be found in many text books of numerical-methods [Johnson and 

Riess, 1982]. In the Newton-Raphson method, the estimation of £ at 

step n+1 is given by 
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j(n+l) ̂  j(n) _ (7.10) 

where 2^"^ is the estimation of f at step n, Af = and 

VQ = VS - XVx^ - M l ,  (7.11) 

and 

WQ = WS - XWx^. (7.12) 

VS is a vector, and WS is a purely diagonal matrix. They can be 

readily found from (7.6). 1 is unit vector. The i-th element of Vx^ 

is 

Bx^/afi = 2 Z(&Zfjhk_j - dj^ ) hk_i / al (7.13) 

2 
which is a convolution between the difference and the PSF. Vx is 

different than that given by Cornwell and Evans [1985]. The ij-th 

2 
element of Wx is 

(Wx^)ij = 2 ZhQ hj_i / Oj (7.14) 

It reaches a maximum value at i=j. If |j~i| is larger than the width 

2 
of the PSF, (Wx )£j = 0. Since WS is a purely diagonal matrix, the 

non-diagonal elements of WQ are given by Wx. (WQ) ̂ is an inverse 

matrix of the Jacobian of VQ at step n which has a very large dimension 

of N X N. For simplicity, the nondiagonal elements of the (WQ) ̂ were 

neglected in the Newton-Raphson approach given by Cornwell and Evans 

[1985]. The justifications for the simplification are: (1) the 
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sidelobes of h on the nondiagonal elements are small (in our cases, in 

addition, h|j_£| = 0 for large |j-i|.) so the inverse Jacobian can be 

approximated by letting the diagonal elements be the inverse of the 

diagonal elements of the Jacobian and the nondiagonal elements be zero; 

(2) (WQ) ̂ is a weighting factor for the amount of change related to 

intensities, and the values of diagonal elements play the same role for 

weighting. In our case, since the size of the PSF (blurring function) 

is much smaller than the image size, WQ is a sparse band matrix filled 

with many zeros. In addition, hg > h^ for all i. Thus, the 

justifications also hold in our case and the simplification is also 

used in our method. Therefore, we have approximations of 

(WQ)"\^ ~ l/((WS)ii - (Wx^)ii) (7.15) 

(WQ)"\j ~ 0 if i ^ j. (7.16) 

At this point, all quantities needed for Af are obtained, and then, Af 

can be calculated by equation (7.10). 

As iteration progresses, the Lagrange multipliers have to be 

adjusted to approach their final values. The changes of Lagrange 

multipliers X and u at step n can be estimated by [Cornwell and Evans, 

1985] 

AX = - Ax^ / IIVx^-Vx^lI (7.17) 

A/x = - ZAfi / N. (7.18) 
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2 
X should be calculated for (7.17). It can be found by applying 

Parseval's law to equation (7.3), 

5 N-1 7 9 
X = 2 ( Fk^k ~ Dk) / (7.19) 

k=0 

where F, H, and D are Fourier transforms of f, h, and d, respectively. 

The convergence criterion may be given by 

I IVQVQI I < ell I'll I (7.20) 

where e is of order of 0.01 or less. In practice, the convergence 

2 
criterion may be also given by x^. degree of Af, and the maximum 

iteration value. 
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SOME EXAMPLES OF IMAGES RESTORATION 

The MEM discussed above was implemented at the Iowa State 

University Computer Center on the VAX 11/780 computers. Some 

experiments were done for simulated images and industrial NDE X-ray 

radiographic and IR images. If the size of a PSF is small (for 

instance, 5x5), the MEM program is fairly fast because we used a 

direct convolution. For a wide PSF, the main computation cost is two 

FFTs per iteration. The number of iterations required is about 15 to 

25. 

Figure 7.1 is an original computer generated image with a size of 

32 X 32. The square in the center is 5 x 5. Figure 7.2 is a blurred 

image obtained by convolving Figure 7.1 with a uniform 5x5 blurring 

matrix. Figure 7.2 has a signal-to-noise ratio of 100 at the brightest 

part of the image. Figure 7.3 is an MEM image restored from Figure 

7.2. The distorted shape and blurred edges are well reconstructed. 

Since the size of the PSF was small, a direct convolution was used. 

The number of iterations is 25 for this MEM image. The CPU time is on 

the order of a few tens of seconds. 

Figure 7.4 is a digitized 128 x 128 industrial NDE IR image from 

The McDonnell Douglas Aircraft Company. The shape and edges of this 

image were required to be defined for flaw sizing. However, the shape 

was blurred due to the difused thermal wave radiation. The edges were 

too fuzzy to be well defined by conventional edge detection methods. 

The reconstructed MEM image is given by Figure 7.5. A 15 x 15 PSF was 



www.manaraa.com

169 

used to obtain this MEM image. The number of iterations was 15. 

Because the width of the PSF is large, FFTs were used to calculate the 

convolution terms in the MEM. The VAX CPU time used is about 8 

minutes. The shape and edges of the MEM image are better defined than 

the original image. 

Figure 7.6 is a digitized 64 x 64 industrial NDE X-ray 

radiographic image of casting for a valve. The blurred edge was caused 

by the finite size of the X-ray beam. The MEM image of Figure 7.6 is 

given by Figure 7.7. A 7 x 7 PSF was used to obtain the MEM image in 

15 iterations. The VAX CPU time used was about 2 minutes. The shape 

and edges of the MEM image are better defined than the original image. 

Figure 7.1. An computer generated square image with a size of 32 x 32 
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Figure 7.2. A blurred image of Figure 7.1 

Figure 7.3. An MEM image from Figure 7.2 
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Figure 7.4. A digitized industrial NDE IR image 

Figure 7.5. A MEM image of Figure 7.4 
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Figure 7,6. A digitized industrial NDE X-ray radiographie image 

Figure 7.7. An MEM image of Figure 7.6 
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CONCLUSION 

A practical MEM algorithm has been discussed and implemented for 

industrial NDE images. MEM maximizes image information and minimizes 

configurational information. It restores a blurred image and gives 

good definition for shapes, details, and edges of the image. 

Experiments have shown that this maximum entropy deconvolution method 

is fast and efficient for practical applications. The main cost of the 

computational time, which is two FFTs per iteration for large size PSFs 

and two direct convolutions for narrow PSFs, is less than many other 

MEMs. However, some parameters of this MEM should be carefully 

adjusted for a fast and stable convergence. This MEM can be further 

improved with additional experience. 
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PART VIII. LOCAL FEATURE ENHANCEMENT OF SYNTHETIC RADIO IMAGES BY 

ADAPTIVE KALMAN FILTERING 
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ABSTRACT 

An adaptive Kalman filtering technique is developed to improve 

final radio astronomy images obtained by conventional data processing 

procedures. This technique focuses on local feature enhancement which 

is different than other radio astronomy image restoration methods. The 

enhancement is especially effective in the low S/N region of an image 

where one may want to distinguish between source structure and 

background noise. The main steps of this technique are: image 

segmentation, image modeling, and adaptive Kalman filtering. Compared 

to traditional image enhancement techniques, this method has advantages 

of emphasizing local information, estimating a pixel by optimally 

weighting neighborhoods with a consideration of noise statistics, 

smoothing noise while preserving edges and source structure, and giving 

statistics of estimation errors. The technique is applied to enhance 

O 
VLA (operated by NRAO ) images of radio sources NGC 7027 (planetary 

nebula) and 3C47 (classical double quasar). 

3 
The National Radio Astronomy Observatory is operated by 

Associated universities Inc., under contract with the National Science 
Foundation. 
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INTRODUCTION 

Many signal processing algorithms have been successfully developed 

to reconstruct and improve synthetic radio images provided by modern 

interferometric arrays such as the VLA [Thompson et al., 1980; Napier 

et al., 1983]. Empirical calibration [Hjellming, 1982] and self-

calibration [Readhead and Wilkinson, 1978; Schwab, 1980] procedures 

were designed to correct (u,v) data for atmospheric disturbances. The 

deconvolution algorithm CLEAN was developed to remove the sidelobes 

created by Fourier transforming irregularly spaced data and a sparsely 

filled aperture plane [Hogbom, 1974; 1984; Schwarz, 1978; Clark, 1980; 

Cornwell, 1983]. The maximum entropy method MEM has been used for 

efficient deconvolution and reconstruction of extended sources [Frieden 

and Swindell, 1976; Wernecke and D'Addario, 1977; Gull and Daniell, 

1978; Skilling and Gull, 1985; Cornwell and Evans, 1985). However, 

these techniques are not perfect and disturbances due to the system and 

the atmosphere cannot be totally removed from the data, especially for 

long baselines, high frequencies, and summer weather. The disturbances 

appear as background noise and blurring of an image. The noise and 

blurring can make it difficult to distinguish between a real source 

feature and an artifact caused by noise. The situation becomes worse 

in a low S/N area. Especially, when intensities of a source and noise 

are at the same order, one can not confidently define a source 

structure. 
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In this work, we develop a scheme to enhance an image so that its 

contrast can be increased to promote better judgement about a source 

and the noise. Being different than other radio astronomy image 

processing methods, our approach enhances local features of an image 

with local image information. On the contrary, CLEAN and self 

calibration use global information of an image. To be useful in 

practice, our method requires little a priori knowledge of an ideal 

image and the image forming mechanism. We assume that only a distorted 

observed image is accessible. A model identification method used to 

find unknown parameters of an image allows the Kalman filtering to be 

adapted to the local characteristics of an image. Then, the contrast 

of an image is increased by optimally and recursively estimating each 

pixel of the image. It is done by optimally weighting neighborhoods of 

the pixel using spatial noncausality of an image. Because of the 

nature of adaptive Kalman filter and image segmentation techniques, 

edges and source structures can be well preserved in a filtered image. 

Many other noise smoothing methods smooth out the noise, but blur the 

edges and source structure also. This work is a supplement to radio 

astronomy data processing methods and can be used in the last stage of 

a data processing procedure. 

There are three main steps in our method. First, low-level image 

segmentation is used to partition an image into approximately wide-

sense stationary regions. Then model identification and parameter 

estimation methods are applied to each region to find parameters of the 
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signal and noise models. Finally, an adaptive Kalman filter is used in 

each region to optimally estimate pixels so that an image is improved. 

Step one may be skipped when one wants to have fast and efficient 

processing. 

We have used this approach in radio astronomy images and X-ray 

images in nondestructive evaluation (NDE). Experiments show that our 

approach is useful for increasing the contrast of an image degraded by 

both white and colored noise. The procedure is applied to enhance VLA 

maps of radio sources NGC 7027 (planetary nebula) and 3C47 (classical 

double quasar). 
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PRELIMINARY DEFINITIONS 

Let an ensemble of two-dimensional views of radio sources be 

characterized by a discrete finite random field s={s(i,j); l:£iiNj, 

l<j<N2} where the image is Nj x N2 pixels. Then a view of a specific 

radio source is a realization of this field and each pixel of its image 

can be represented by F£j(s(i,j)) where F^j is a mapping function 

describing the image forming mechanism. With interference in 

observation environments and nonperfect observation instruments, a 

random noise field N=[N(i,j)] is introduced into the mapping 

processing. Thus an observed random field Y=[Y(i,j)] can be modeled by 

Y(i,j) = F£j(s(i,j)) + N(i,j). (8.1) 

A specific image is then a realization of Y: 

y(i,j) = Fj;j(s(i,i)) + n(i,j) (8.2) 

where the lower case letters indicate realizations of the associated 

random fields. Assuming that inverse algorithms such as CLEAN and MEM 

can remove F^j well, we then have 

y(i,j) = s(i,j) + v(i,j) (8.3) 

where v(i,j) is a noise term combining n(i,j) and the noise-like 

disturbance caused by the nonperfect inverse algorithms. The problem 

is; given observation y(i,j) and statistics of v(i,j), we want to find 

an estimate s(i,j) of s(i,j) which minimizes the summed-squared error 
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E = 2 ( s(i.j) - s(i,j) (8.4) 

An approach for finding a solution to this problem is presented in the 

following three sections. 
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IMAGE SEGMENTATION BY LOCAL SPATIAL ACTIVITIES 

We use a low level image segmentation technique to partition an 

image into uniform regions which are wide-sense stationary processes. 

This stationarity is required in the image modeling. 

Image segmentation is often used for image classification and 

image feature extractions. There are many image segmentation 

techniques such as optimal thresholding [Gonzalez and Wintz, 1977], 

split and merge [Chen and Pavlidis, 1979], a model based method 

[chatterjee and Chellappa, 1987], the Gibbs distribution method 

[Elliott et al., 1986], region growing and region clustering [Gonzalez 

and Wintz, 1977], the K-mean method and isodata method [Tou and 

Gonzalez, 1974], Fuzzy c-mean clustering [Cannon et al., 1986], and a 

rule-based expert system [Zheng and Basart, 1987]. The key point of 

all the various methods is that one studies how pixels of an image 

cluster with respect to some given set of measurements made on the gray 

levels of these pixels or their neighborhoods. In our method, this is 

done by clustering local features of an image. The local-feature space 

in our method consists of local means and masking functions [Rajala and 

de Figueiredo, 1981] which are related to first and second order 

statistics, respectively. Then wide-sense stationarity can be obtained 

by partitioning the local feature space using some thresholds. These 

thresholds are chosen by examining histograms of local means and 

masking functions. Since only statistical values are used, and high 

level knowledge about physical contents of an image is not used in 

partitioning, this method is called low-level segmentation. 
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In our method, first and second order statistics of an image are 

related to the local means and the masking function, respectively. The 

local mean of an image is defined as 

1 i+n j+n 
m^(i,j) z Z y(p,q) (8.5) 

(2n+l) p=i-n q=j-n 

where y(p,g) is the gray level of a pixel at (p,q). It is a running 

window average. The widow size is (2n+l) x (2n+l). If the mean value 

of the noise process is zero and the image process is stationary 

ergodic, m^Ci,]) will converge to a noise-free mean value at (i,j) on 

the order of Op(2n+l) ̂ ). Therefore, when n is not too small and the 

image process is at least locally stationary ergodic, mj,(i,j) is not 

sensitive to zero-mean noise and is a good estimate of the local mean 

at (i,j) of a noise-free image. To sort local means, a histogram of 

local means is calculated and thresholds separating modes of the 

histogram are used to segment an image. A local minimum-seeking 

algorithm finds the thresholds by searching slope changes in a smoothed 

histogram. Local minimum values caused by small fluctuations are 

ignored. The thresholds are represented by Tlj^ where k = 0, 1, 2, •••, 

/3; and Tl^^ < Tl^+i. Then the image is primarily partitioned into 

subimages where k = 1, 2, /3. A pixel at (i,j) belongs to O^k 

if 

Tlk-i < mn(i,j) < Tljç (8.6) 

where Tig = minimum of m^(i,j)'s and Tg = maximum of mj^(i,j)'s. 
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The image will be further partitioned according to the second 

statistic information. This is done by using the masking function. 

The masking function is defined by 

where ||(i,j)-(p,g)|| is the Euclidean distance between points (i,j) 

and (p,q). Dgq^ is a slope of a pixel (p,q) in a direction of n [Zheng 

and Basart, 1988]. The integer r should be greater than the 

correlation distance of the noise and the order of the AR processes 

used in the modeling procedure. Mj-(i,j) measures spatial activity of 

an image and is related to the second order statistic. It is also 

associated with the gradient concept and may be used for edge 

detection. The standard masking function uses one adjacent pixel on 

each side of (p,q) to find Dpg^ and it is very sensitive to noise. By 

grouping a few pixels at each side of (p,q), one can reduce noise 

effects in Dgg^. Again, a histogram of the masking function is 

computed, and the local minimum-seeking algorithm is used to find 

thresholds separating modes of the histogram. The thresholds are given 

by T2^ where k = 0, 1, 2, •••, a; and T2j^ < T2j^+|. T2j^s are used to 

partition the image into subimages 0^ where k=l, 2, A pixel 

at (i,j) belongs region 0^ if 

i+r j+r 
-|I(i,j)-(p,q) I I y Q 

„"pqn Mr(i,j) = Z Z e 
p=i-r q=j-r 

(8.7) 

TVl < Mr(i,j) < T2k ( 8 . 8 )  

where T2q = minimum of M^(i,j)s and 12^ - maximum of Mj,(i,j)s. 
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Finally, uniform regions are obtained by searching for, and 

identifying, common regions of and The segmentation index I = 

1, 2, •••, NSEG; and the maximum number of segments NSEG < a-p. Then 

each is an approximately wide-sense stationary process which is 

necessary for image modeling and parameter estimation. 



www.manaraa.com

188 

SOURCE STRUCTURE AND NOISE DISTURBANCE MODELING 

We model an image by specifying its gray level y(i,j) at every 

point (i,j) of an image. An ensemble of images can be classified as a 

random field. If this random field is wide-sense markov, its ID or 2D 

markovian representation is a recursive process which is often 

expressed by an autoregressive process with an order of p, AR(p). In 

other words, if a correlation function can be found for a wide-sense 

stationary process, and consequently, its unique AR(p) or ARIMA model 

can be obtained. We reported the application of ARIMA modeling to VLA 

phase data in Basart and Zheng [1986]. Autoregressive modeling theory 

and applications can be found in many textbooks [Box and Jenkins, 1976; 

Pankratz, 1983; Fuller, 1976; Abraham and Ledolter, 1983; Graupe, 

1984]. 

As shown in the last section, we have partitioned an image into 

wide sense stationary regions. By raster scanning, data of each region 

are collected into a one dimensional array of which the observation 

equation (8.3) now becomes 

y(t) = s(t) + v(t) (8.9) 

where y(t) is a gray level at a pixel of an observed image, s(t) is an 

image process to be reconstructed and v(t) is a colored noise sequence 

(spatially autocorrelated) with a zero mean. Without losing any 

generality in each wide-sense stationary window, s(t) can be 

represented as an AR(p) process: 
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P 
s(t) = 2 0^s(t-n) + w(t) (8.10) 

n=l 

2 where w(t) is an iid(0,o^). Since v(t) has a zero mean, E[y(t)] = 

E[s(t)], and it is presumably taken out from y(t). Otherwise, there is 

a constant term in equation (8.10). In the same window, v(t) may be 

represented as an AR(q) process: 

q 
v(t) = Z 0j^v(t-n) + n(t) (8.11) 

n=l 

where n(t) is an iid(0,(7^). v(t) can be either colored or white. If 

v(t) is white, v(t) = n(t) which is a simple form. In practice, noise 

is always somewhat correlated. 

There are many ways to find the coefficients of (8.10) and (8.11). 

Given y(t) and some parameters, such as q and or p and a^, one may 

find all unknowns of (8,10) and (8.11) by the model identification 

method. At the present stage of our work, a simple and straightforward 

method requiring known, or measurable, statistics of v(t) is developed 

for modeling. The procedure is given in the following. 

Assume that the noise is stationary in an image and the spatial 

autocovariances of the noise can be measured from a flat region in the 

image, where the spatial activity is dominated by noise, we then can 

find by solving the Yule-Walker equation (Box and Jenkins, 1976): 
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Cy(0) 
Cy(l) 

Cv(q-l) 

Cv(l) 
Cv(2) 

CyCq-i) 
C„(q-2) 

Cy(0) 

CyCl) 
Cy(2) 

Cv(g) 

( 8 . 1 2 )  

where C^(h) is an autocovariance of v(t) at a Lag of h. Equation 

(8.12) can be iteratively solved for 0^ (Levinson, 1974; Jayant and 

2 
Noll, 1984). Ojj can be obtained by calculating the variance of 

n(t) = v(t) - Z e„v(t-n). 
n=l 

(8.13) 

The autocovariance of equation (8.9) is 

Cy(h) = Cs(h) + 2 Cg^(h) + Cy(h) 0 < h (8.14) 

where Cy(h) is the autocovariance of y(t) that can be estimated from 

the observed image. The cross term Cgy should be zero due to 

E[s(t)n(t)]=0. Cjj(h) is the autocovariance of n(t) that can be readily 

obtained from equation (8.13). In practice, the estimated covariance 

matrix of s(t) must be semi-positive definite; otherwise, the 

parameters of the noise should be adjusted. With known Cg(h), ̂ (n) can 

2 be found with a Yule-Walker equation of order p. can be estimated 

by calculating the variance of w(t) with equation (8.10). At this 

point, we obtain all parameters of the AR models of the signal and 
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noise processes in equation (8.9) for a running window. This parameter 

estimation procedure is repeated for each running window until the 

entire image is processed. 

At this point, we have found all unknown parameters of the image 

system described by equations (8.9) to (8.11). These parameters are 

needed to separate the noise from the signal by Kalman filtering. 
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KALMAN FILTERING IMAGES 

The Kalman filter is an optimal filter that can separate two or 

more additive stochastic processes whose spectra overlap. The 

separation is done with the criterion of least squared error. The 

Kalman filter is a recursive linear vector filter. Its state space 

form allows system, signal noise, deterministic, stochastic, and other 

interested processes be considered and introduced into the filter 

equations. Kalman filter theory can be found in many references 

[Kalman, 1960; Kalman and Bucy, 1961; Gelb, 1974; Brown, 1983]. 

Studies of the Kalman filter in image enhancement can be found in 

[Woods and Radewan, 1977; Biemond et al., 1983; Tekalp et al., 1986]. 

The system given by equations (8.9) to (8.11) has to be written in 

a state-space form and then implemented in the Kalman filter. Let 

s(t)=xj^(t) and v(t)=Xp+]^(t), equations (8.10) and (8.11) can be 

represented by 

r 1 r 
Xl (t) 
X2(t) <j)2 

. l(p-l) • b(p,q) 

xi(t-l) 
X2(t-1) 0 

Xp(t) 0p 0 . . . 0 Xp(t-l) + 0 

Xp+i(t-l) W2(t) 
Xp+2(t-l) 0 

(8.15) 

*1 
82 

0(q,p) . l(q-l) 

9q 0 ... 0 Xp+q(t-l) 0 
J 
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where l(p-l) and l(q-l) are (p-l)x(p-l) and (q-l)x(q-l) identity 

matrices. 0(p,q) and 0(q,p) are p x q and q x p zero matrices, 

respectively. (8.15) can also be written as 

Where, by definition, the transition matrix relates x^-i to x^. The 

observation equation becomes of 

where H is a measurement vector giving a connection between the 

measurement y(t) and the state vector x^.. In this case, H is a (p+q) 

row vector and H(i)=0 (for i=l,2 q+q) except H(l)=l and H(p+l)=l. 

e(t) is a very small disturbance term. It is introduced in (8.17) for 

numerical purposes. The variance of 6(t) is denoted by R. 

If the data scanning procedure mentioned in the last section is 

processed with a running window in a segment of an image where the size 

of the running window is smaller than that of the segment, the 

estimated parameters of equations (8.10) and (8.11) will be changed not 

only from segment-to-segment but also from window-to-window. Thus they 

represent the local nature of an image so that the Kalman filter is 

adapted to the local features of the image. 

The Kalman filter is a set of recursive equations given by the 

following. 

1. Predict the next state vector and the error covariance matrix: 

xt - * *t-l + Wf ( 8 . 1 6 )  

y(t) = H + e(t) (8.17) 

*t+l|t = * *t|t ( 8 . 1 8 )  
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Pt+l|t = * Ft It + Q (8.19) 

2. Compute the Kalman gain vector: 

Kt|t = Pt|t-1 Pt|t-1 + R)"^ (8.20) 

3. Estimate the state vector: 

*t|t = *t|t-l + Kt|t( y(t) - H Xt|t-1 ) (8.21) 

4. Estimate the error covariance matrix: 

Pt|t = (I - Kt|t H) Pt|t-1 (8.22) 

where x^jt estimate of Xj. with the (t)th observation, and Xt|t-1 

is a prediction for Xj. at step (t-l) | ^ is an error covariance matrix 

which is defined as as E[ (x^.-x^ | ̂)^]. Q is a (p+q) x (p+q) matrix with 

Q(l,l)=a^, Q(P+1 ,p+l)=cyj^, and all other elements equal to zero. 

Given initial values x^jg and P^jQ and the first measured data 

point, the |^ and |j can be found by (8.18) and (8.19), 

respectively. Thus a recursive filtering procedure begins to separate 

s(t) (i.e., X]^(t)) from the noisy observation y(t). First, a 

prediction or a best guess of the next state vector can be made by 

(8.18). Then this guess is corrected by a calibration factor which is 

given by optimally weighting the difference between an observation and 

its prediction (8.21). The first element of the calibrated vector is 

an estimate of s(t). Finally, the P matrix gives a measure of the 

estimation error by (8.20). This procedure is repeated for the next 
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observation from step 1 to step 4 until all observations in a window 

are processed. A forward-backward filter [Brown, 1983] is used in this 

procedure. For a stationary process, P^jt will approach 

constant values after the first few observations are processed. In 

order to take advantage of the noncausaLity of an image, the directions 

of raster scanning can be chosen from different directions. However, 

forward and backward filtering and various direction scanning will add 

considerable extra computational time. 

This modeling and filtering procedure is repeated from one window 

to another and from one segment to another until all pixels of an image 

are processed. The image consisting of the first component of x^jt 

the desired output. 
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ENHANCING RADIO SYNTHETIC IMAGES NGC 7027 AND 3C47 

The technique introduced above has been used to enhance VLA radio 

images NGC 7027 (planetary nebula) and 3C47 (classical double quasar). 

NGC 7027 was observed by J. P. Basart and C. T. Daub using the VLA at a 

frequency of 14.9649 GHz (X=2cm) with the C configuration [Basart and 

Daub, 1987]. 3C47 was observed by J. P. Basart and J. 0. Burns using 

the VLA at a frequency of 4.8351 GHz (X=6cm) with the B configuration. 

The standard VLA data processing procedure was used to edit, calibrate, 

self-calibrate, map, and CLEAN the data. The resulting maps are shown 

in Figure 8.1 and Figure 8.2 which have sizes of 92 x 92 and 288 x 288, 

respectively. These two maps with lower contour levels are given in 

Figure 8.3 and Figure 8.4. Note that the intensities of the jet in 

Figure 8.4 are of the same order as background noise. If we define a 

dynamic range to be a ratio of the peak flux density to the rms value 

of the background noise, the highest dynamic ranges of the Figure 8.3 

and Figure 8.4 are 2000 and 2500, respectively. In the jet area, the 

dynamic ranges are about 1.0 to 5.5. 



www.manaraa.com

197 

Figure 8.1. A contour map of a radio source NGC 7027. The peak flux 
density is 0.2616 Jy/beam 

Figure 8.2. A contour map of a radio source 3C47. The peak flux 
density is 0.1742 Jy/beam. The % contour levels are; 
-0.2, -0.1, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 10, 20, 40, 80, 
95 
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Figure 8.3. A contour map with the additional contour levels 0.04, 
0.08, and 0.2 of Figure 8.1 

J* 

##g 
Figure 8.4. A contour map with an additional contour level 0.05 of 

Figure 8.2 
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The adaptive Kalman filter with the segmentation technique was 

used to enhance the NGC 7027 map. The segmentation number NSEG was 5 

and the running window size was 8x8. AR(2) models were used for 

describing the source structure and a white noise model was used for 

the background noise. The rms of the noise was estimated as 0.129 mJy. 

The reconstructed map by the Kalman filter is given in Figure 8.5 with 

the same contour levels as Figure 8.3. The noise level of Figure 8.5 

is reduced to 0.048 mJy and the dynamic range was increased to 5400. 

The estimated error (average rms of estimation error) of the Kalman 

filtered map is about 0.03 mJy. Since a white noise model was used, 

the white components of the background noise were well removed but the 

correlated structure of the disturbance remains in the low-middle area. 

Those extended structures close to the source edge may be considered as 

either source extension or source power dispersion due to phase error 

or nonperfect deconvolution. Since the extended structures have high 

spatial variances and are highly spatially correlated, they were 

recognized as source structure by the Kalman filters used and not 

changed much. It took about 15 minutes of VAX 11/780 CPU time to 

segment and filter this map. Since there is a search process involved 

in filtering with the segmentation method, it is relatively 

computational-time expensive. 
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Figure 8.5. The enhanced map from Figure 8.3. The contour levels are 
the same as Figure 8.3 

TFrr 

' ' & 

4 ;  '1.̂  

Figure 8.6. An enhanced map from Figure 8.4. The peak flux density 
and the contour levels are the same as Figure 8.4 
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The result of Kalman filtering the 3C47 map is shown in Figure 8.6 

with the same contour levels of Figure 8.4. Since the map size of 

Figure 8.4 was 300 x 300, it would take about two and half hours of VAX 

11/780 CPU time to filter this map with the same scheme used for NGC 

7027. In addition, if we model the noise as a colored process AR(q), 

the time will be increased by a factor related to (q+l). Therefore, it 

is not practical. A fast filter should be found. A scheme without 

segmentation is used for fast filtering. In this scheme, the size of 

the running window is chosen so that the image process in the window is 

close to wide-sense stationary for most regions of the image. The 

price for this scheme is that the filter would not do much for those 

regions located in the edges of the source. Since the background noise 

of Figure 8.4 was highly spatially correlated, an AR(1) model was used 

to model the noise. In this case, the noise was treated as a second 

signal source. An AR(1) process was used to model the source structure 

in each window. The low orders of AR models were used for the fast 

filter. In addition, the program structure was optimized for 

computational time. The running window size was chosen as 12 x 12. 

The computation time of this filter scheme without segmentation was two 

and half minutes of VAX 11/780 CPU time without counting l/O time. The 

computational time had been reduced so much that this scheme is well 

suited for practical applications. The rms value of noise in the 

filtered map is 0.4 mJy while it in the Figure 8.4 is 0.7 mJy. The 

average rms value of the estimation error for each pixel was 0.25 mJy. 
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The dynamic range is increased to 4200. The dynamic ranges of the jet 

structures are about 2.5 to 10.0. The filtered map shows that the 

background noise was reduced and the jet structure was better exposed. 

Comparing Figure 8.4 and Figure 8.6, one may have a higher degree of 

confidence in declaring the discovery or the existence of a jet. 
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CONCLUSION 

A radio astronomy image can be further enhanced by an adaptive 

Kalman filter. The enhancement is designed for local features. It 

smooths noise but preserves edges and source structure well. The error 

covariance matrix of the Kalman filter gives statistics of the 

estimation error of the filtering which are never given by other image 

enhancement techniques. This technique is helpful when one wants to 

identify some source structure in fuzzy regions where intensities are 

on the same order as the noise. It increases one's degree of 

confidence when trying to discriminate between source structure and 

noise. Filtering with a segmentation technique is a complete filtering 

scheme in theory. However, a filtering scheme without segmentation can 

be used in practice to reduce computation time. We suggest using this 

method in the very last stage of image processing. This work may be 

further developed to enhance radio synthetic maps with partially known 

patterns of the radio sources. 
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PART IX. T-CALIBRATION: A NEW TECHNIQUE FOR CORRECTING ATMOSPHERIC-

INDUCED PHASE ERRORS OF A SYNTHETIC-APERTURE ANTENNA ARRAY BY TIME 

SERIES MODELING AND KALMAN FILTERING 
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ABSTRACT 

A new technique is discussed and developed to correct atmospheric-

induced errors in phase data of radio astronomy interferometers and 

synthetic-aperture antenna arrays. The main feature of this technique 

is to model and filter the information contents of the phase data in 

time sequences. T-calibration means correcting astronomical phase data 

by the time series modeling and Kalman filtering technique. Because 

the atmospheric phase variations are highly correlated in time, they 

can be described by stochastic time series models. In conjunction with 

other radio astronomy data processing algorithms, a time series 

modeling and parameter estimation technique is developed to obtain 

noise models and source models from observed phase data. These models 

can be in the form of stochastic difference equations, auto­

correlation, power spectral, or state variable formats ready for 

further data processing. Once the models are in state variable 

formats, the Kalman filter is used for optimally extracting source 

information from noisy data. The resulting synthetic image is then 

improved by reducing the phase error. The quality of the corrected 

phase data is quantitatively described by the error covariance matrix 

of the Kalman filter. This technique has been tested using the VLA 

(operated by NRAO^) and the Hat Creek millimeter interferometer. At 

the end of this paper, some suggestions for further developments are 

^The National Radio Astronomy Observatory (NRAO) is operated by 
Associated Universities, Inc., under contract with the National Science 
Foundation. 
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INTRODUCTION 

Atmospherically induced phase fluctuation reduces the performance 

of high-resolution radio astronomy interferometers and synthetic-

aperture antenna arrays. Studies have shown that the phase fluctuation 

is mainly dominated by atmospheric water vapor at centimeter 

wavelengths and erratically increases as baselines and frequencies 

increase [Baars, 1967; Basart et al., 1970; Hinder, 1970; Mathur at 

al., 1970; Wesseling et al., 1974; Hinder and Ryle, 1971; Margrave and 

Shaw, 1978; Hamaker, 1978; Dravskikh and Finkelstein, 1979; Han, 1980; 

Moran and Rosen, 1981; Armstrong and Sramek, 1982; Treuhaft and Lanyi, 

1987]. 

In practice, two calibration methods were developed for reducing 

the phase error. The first method, called "empirical calibration" 

using point-like calibrator sources, was designed to correct the long-

term phase fluctuation. The second method, named "self-calibration" 

employing the concept of phase closure and CLEAN components, provides 

the short-term phase correction [Jennison, 1958; Readhead and 

Wilkinson, 1978; Schwab, 1980]. The CLEAN method was designed to 

remove the synthesized beam from a map [Rogbom, 1974; 1984; Schwarz, 

1978; Clark, 1980; Cornwell, 1983]. These two calibration methods work 

well for most observation situations. Exceptions are severe 

atmospheric conditions, no point-like source in the field-of-view, and 

no good model of the source. 
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Another approach to this problem is to use a microwave water vapor 

radiometer to estimate the atmospheric phase fluctuation. Although 

this technique has had some success, there is a problem to be solved 

before the technique can be used routinely [Resch et al., 1984]. 

Some efforts have also been made for finding statistical models of 

the phase fluctuation such as the spatial structure function of the 

phase fluctuations [Tatarskii, 1961; 1971; Ishimaru, 1978; Armstrong 

and Sramek, 1982; Treuhaft and Lanyi, 1987]. With a different approach 

to the problem than the structure function, a time series modeling 

technique was proposed to describe the stochastic properties of the 

phase fluctuation in time [Basart and Zheng, 1986]. It was shown that 

time series models provide good short-term forecasting for VLA phase 

data and reasonably describe the behavior of the atmospheric phase 

variation for certain time durations. We also reported that the phase 

fluctuation is highly correlated in time. Thus, it was natural to 

search a new avenue to restore phase information in time order by which 

the information of phase fluctuation in time is used. 

In this work, a time series modeling and Kalman filtering 

technique is introduced to correct the phase fluctuation in time. We 

expect this alternative data correction technique to be used to improve 

the performance of high-resolution radio astronomy interferometers and 

synthetic-aperture antenna arrays when the performance of standard 

calibration methods are not good enough or when the number of 

interferometers of an array is not enough to apply self-calibration. 
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The Kalman filter is a recursive and optimal linear filter couched 

in state-variable theory for modern control systems. The main feature 

of the Kalman filter is that the filter can optimally and recursively 

separate two or more stochastic processes whose spectra overlap. We 

apply the Kalman filter to estimate phase data by optimally separating 

atmospheric phase noise and the phase information from a source. 

However, the performance of the Kalman filter critically depends on the 

accuracy of the model for each process under consideration. Therefore, 

mathematical or statistical models of the atmospheric phase data and 

source phase data are needed. Combining the time series modeling 

method with other radio astronomy data processing algorithms such as 

calibration and CLEAN, stochastic difference models for both source 

structure and phase noise can be found. Then, the Kalman filter is 

used for the phase estimation. In this paper, the basic procedure for 

correcting phase error by modeling and Kalman filtering is introduced 

and some results of simulated tests which are close to practical 

applications are given. Some considerations, advice, suggestions for 

using this technique, and further developments are given at the end of 

this paper. 
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INTERFEROMETER AND ATMOSPHERIC DISTURBANCE 

The fundamental idea behind an interferometer or a synthesis array 

is that it measures the Fourier transform of the observed brightness 

distribution by cross-correlating the signals from antennas separated 

by distances up to thousands of kilometers. The measured complex 

visibility (unnormalized) is: 

where the Tg(x,y) is the radio source brightness temperature 

distribution. The antenna beam pattern was omitted from (9.1) for 

simplicity. 

The resolution of an interferometer increases as the baseline 

increases. However, the resolution of earth-based interferometers is 

ultimately limited by atmospheric turbulence. The phase measured by an 

interferometer is the phase difference related to the group delay 

between the arrival of the signal wavefront at each of the two 

antennas. In the noise free case, the group delay varies with the 

distance between two antennas and the position of the radio source 

relative to the baseline. But in practice, the measured delay is also 

affected by several other factors such as the receiving-system noise, 

bandwidth, and atmospheric turbulence. According to Fourier transform 

theory, a phase error Agi in the frequency domain will cause a position 

shift in the spatial domain. For a simple case at one instant of time 

V(u,v) = / Tg(x,y) e -i2*(ux+vy) jxdy (9.1) 

V(u,v) e-i2*(A*u+A*v) ^ > Tg(x-A0,y-A0). (9.2) 
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Moreover, the phase fluctuation is in a random fashion so that the 

shift is random and unpredictable. For synthesized data, the random 

phase error will cause scattering of the source power. If the phase 

error is on the order of the phase changes in the source visibility, we 

will have severely distorted maps. It is well known that the phase 

error at centimeter wavelengths is dominated by atmospheric water vapor 

which affects the refraction index of the traversed medium. Consider 

the refractive index n(r,t) in a nonionized atmosphere: 

n(r,t) = HgCr) + Nf(r,t) (9.3) 

where ttgCr) is a time average of n(r,t) at location r and N^Cr.t) 

represents the random fluctuation in n(r,t). If two antennas of an 

interferometer are located at and r2, respectively, the phase error 

due to a nonhomogeneous medium is 

A0 = k / nCr^jt) dr^ - k / n(r2,t) dr2 (9.4) 

where k=27r/X, X is a wavelength, and the integration range is the 

atmospheric path through which the wave travels. The interesting term 

from (9.4) is 

= k / Nf(r2,t) drj - k / Nf(r2.t) dr2 (9.5) 

which causes the random behavior in phase. With some assumptions and 

approximations, Han [1980] showed that the mean square value of A0£ has 

the following behavior 

E[(A^£)^] (troposphere) « (D/X)^ (9.6) 
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where D is the baseline length. To obtain a high resolution map, D/X 

should be increased. However, as D/X increases, the phase error due to 

water vapor in troposphere will increase and degrade the quality of the 

map. Therefore, a correction for phase error is necessary. 
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MODELING ALGORITHM 

A simple and practical auto-regressive (AR) modeling approach is 

introduced for finding models of random processes. There are many text 

books available for the details of time series modeling theory [Box and 

Jenkins, 1976; Pankratz, 1983; Fuller, 1976; Abraham and Ledolter, 

1983; Graupe, 1984]. Previously, time series modeling theory was 

applied to VLA phase data by Basart and Zheng [1986]. 

Assume that a class of noise-free phases received by an 

interferometer can be characterized by a real-valued finite random 

field S = {s(t); 0<t<T} where T is the observation time length. A 

random atmospheric noise field V = {V(t); 0<t<T} and a random system 

noise field N = {N(t); 0<t<T} are introduced in the observation field 

so that 

where Z = {Z(t), 0<t<T} is an observed random field. Thus a specific 

observed phase value is a realization of Z value at time t: 

Let the deterministic factors such as phase differences due to the 

geometric delay g(t) and the position p(t) of a source center be 

removed from (9.8). We have 

Z(t) = S(t) + V(t) + N(t) (9.7) 

z(t) = s(t) + v(t) + n(t). (9.8) 

y(t) = x(t) + v(t) + n(t) (9.9) 
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where y(t) = z(t) - g(t) - p(t) and x(t) = s(t) - g(t) - p(t). The 

large scale variation of phase existing in (9.8) is removed in (9.9). 

The removal is necessary to obtain a working data sequence which is 

close to wide-sense stationary for a reasonable time duration. 

Generally, v(t) is colored with a nonzero mean and n(t) is white with a 

zero mean. We assume that the mean of v(t) is removed by the 

empirical calibration. v(t) is a main error factor to be removed. 

Given noisy data y(t), we want to estimate x(t) in (9.9). To do 

this, models describing each process in (9.9) are required. Presently, 

no useful closed computational form has been found for each process in 

(9.9). Since the atmospheric phase variation is correlated in time, it 

is natural to think about using stochastic prediction time series 

models to describe the phase fluctuation. A family of stochastic 

models such as ARIMA (autoregressive integrated moving average) model 

was introduced to describe a variety of random phase behavior [Basart 

and Zheng, 1986]. In our previous work, a complete model 

identification and parameter estimation procedure was presented. 

Conceptually, a specific ARIMA model will represent a random 

process with a specific covariance sequence. Given a covariance 

sequence of a random process, an ARIMA model can be identified and 

estimated for the process. In this work, because of the computation 

time, we shall primarily use AR models instead of ARIMA models for 

simplicity. We feel that this simplification is reasonable for testing 

purposes. One always can improve this technique by a more complete 
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modeling procedure. In the following, we shall introduce several 

parameter estimation methods with certain given conditions. 

Parameter Estimation with Unknown Signal and Knowledge of Noise 

Covariances 

Since atmospheric phase fluctuation is correlated in time, without 

losing generality, v(t) can be described by an AR(q) process 

q 
v(t) = Z v(t-i) + a(t) (9.10) 

i=l 

2 
where a(t) is an iidCO,©^). (9.10) is a stochastic difference equation 

whose unknown parameters can be found from the given covariance. 

Taking the covariance operation of both sides of (9.10), we have 

q o 
Cy(h) = 2 C^(|i-h|) + g(h)o/ (9.11) 

i=l 

where C^(h) is the autocovariance of v(t) at lag h. Letting h vary 

from 1 to q, a set of q linear equations (Yule-Walker equation) will be 

formed for q unknown parameters of 0£. A recursive algorithm can be 

used to solve the linear equations (Levinson, 1947; Jayant and Noll, 

1984). Letting h=0, the variance of a(t) can be obtained after 6^ is 

solved. Two useful formulas relating the covariances to parameters of 

an AR model are 

Cv(0) = / (1 - e\) if q=l (9.12) 
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Cy(0) = (l-92)on / if g=2 (9.13) 

To find a model for x(t), we take the covariance operation of (9.9) to 

get 

Cy(h) = Cx(h) + 2Cxv(h) + C^Ch) + 5(h)aJ (9.14) 

2 
where has usually been specified for a specific receiver. The cross 

terms between n(t) with other processes are zero because n(t) Has a 

distribution of iid(0, o^). Cxy(h) is a cross covariance term for x(t) 

and v(t). Cy(h) is a autocovariance of y(t) which can be directly 

calculated from the observed data. Given Cy(h), the autocovariance 

Cjj(h) of x(t) can then be estimated from (9.14) if the x(t) and v(t) 

are uncorrelated with each other. 

With little loss of the generality, x(t) can be described by an 

AR(p) process 

P 
x(t) = Z x(t-i) + w(t) (9.15) 

i=l 

2 
where w(t) is iid(0,a^) and the parameters, can be estimated by 

2 
solving the Yule-Walker equation, can be estimated in the same way 

2 2 2 
to obtain a^. One should be careful that a^, o^, and the covariance 

matrix of x(t) are semi-positive definite. Define a state variable 

vector = {xj(t)); j=l,2, • • •,(p+q)} and let x(t) = Xj^(t) and v(t) = 

Xp+]^(t). We have 
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X l  (t) 
X2(t) 

^1 
2̂ 

l ( p - l )  0 ( p , q )  

Xp(t) 
= 

0 ... 0 

X p + l ( t )  

X p+i(t) 
0 ( q , p )  

^1 
* 2  

I ( q - l )  

'^p+q^^^ 0 ... 0 

x^(t-l) 
X2(t-l) 

Xp(t-l) 

(t-1) 
Xp+2(t-l) 
*p+l 

w(t) 
0 

+ 0 

a(t) 
0 

0 

(9.16) 

Equation (9.9) becomes 

y(t) = X]^(t) + Xp+i(t) + n(t), (9.17) 

The forms of (9.16) and (9.17) are required for the Kalman filter. AR 

models, or ARMA models, can also be written in more general forms such 

as power spectral forms [Zheng, 1985] for other conventional digital 

signal processing techniques. 

Parameter Estimation with Unknown Noise and Knowledge of Signal 

Covariances 

If there is a way to obtain some statistical information on the 

phase variation caused by source structure, the unknown parameters in 

(9.10) and (9.15) can be estimated by the same way as the first method 

except for exchanging the roles of signal and noise. The required 

statistical information about signal is the covariance of the phase 

variation of the source. 
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Parameter Estimation with Unknown Signal and Knowledge of Noise 

Variance 

The condition of knowing only the noise variance is closer to 

practice than the condition of knowing all the covariances. In this 

case, if the atmosphere varies rapidly and the integration time is 

long, the phase error will be less correlated in time [Zheng, 1985]. 

Therefore, the phase noise has a very high portion of whiteness. In 

this case, the noise reduction on the white part is still helpful for 

reducing the phase noise. In practice, the variance of atmospheric 

phase fluctuation may be either given by the measured data of a 

calibrator source or by an empirical rms-baseline formula considering 

weather conditions. In this situation, the parameter estimation 

procedure is the same as the first method except that all 6^=0 and q=0 

in equations (9.10) to (9.17). 
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PARAMETER ESTIMATION COMBINING THE TIME SERIES MODELING METHOD WITH 

OTHER DATA PROCESSING ALGORITHMS 

The above three methods giving general and basic modeling schemes 

require different a prior knowledge. This a prior knowledge is 

necessary for model identification and Kalman filtering; otherwise, we 

can do nothing for the phase with this technique. However, the 

required knowledge is statistical information which we may obtain in a 

variety ways. Using information given by other radio astronomy data 

processing algorithms, we may obtain such required information. Two 

methods listed below are examples of such approaches. 

Parameter Estimation with Data from Calibrator Sources 

The variance or autocovariance of the phase noise is required by 

methods A and C in the last section. This variance or autocovariance 

may be approximately estimated from phase data of calibrator sources in 

an empirical calibration process. During the empirical calibration 

process, data of a strong point-like calibrator source located near the 

unknown source observed are periodically collected. Since the noise 

free phase data of a point source is completely decided by the 

geometric delay and the shift distance of the source position from the 

phase center, any other fluctuations in the phase are due to noise. 

Therefore, the data from a calibrator source are used as correction 

factors applied to unknown source data in an empirical calibration 

procedure. The correction factors are not perfect because the 
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calibrator source is observed at a different position and at a 

different time than the observed-known source and the atmospheric 

condition varies in both spatial and time domains. However, the 

variance (possibly autocovariance) of the phase noise can be estimated 

from data on the calibrator source which provides statistical 

information about the atmosphere. Conceptually, even though the phase 

data of the calibration source are far from perfect to use for 

correction factors because of the variation in space and time, the 

variation of statistical information such as the variance can remain in 

a reasonable range for a reasonable time duration and certain spatial 

distance. Moreover, according to the nature of the empirical 

calibration, the estimated variance will be smaller than what it should 

be in most cases. In this case, the estimated variance of the phase 

noise will be less than what it should be, and then, the Kalman filter 

removes part of the noise and the results are reliable. In an off-line 

situation, with variances or covariances of phase error from data of 

the calibrator source, we always can use the methods mentioned in the 

last section to correct the data. 

Parameter Estimation with CLEAN Components 

According to the nature of the CLEAN deconvolution method, the 

Fourier transform of the first set of positive CLEAN components will 

provide the phase information of the source position and the large 

structure of an extended source. Let the phase of the CLEAN components 

be denoted by c(t), the noise free phase of the unknown source is 
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s(t) = c(t) + e(t) (9.18) 

where e(t) is an error term between c(t) and s(t) and it is a term to 

be estimated. The observation equation becomes 

The g(t) had been presumably removed in (9.19). Moving c(t) to the 

left side, we have 

where r(t) can be readily obtained which is the difference between the 

observed data and the phase of CLEAN components. r(t) is also called a 

residual sequence with some information e(t) existing inside. 

Therefore, there is a need to extract the information from e(t) instead 

of considering it being useless. Given the autocovariances of v(t) and 

the variance of n(t), AR models of both v(t) and e(t) can be estimated. 

Accordingly, the Kalman filter is applied to separate e(t) and v(t) 

from r(t). Consequently, the estimation of s(t) can be obtained with 

(9.18). The autocovariance of v(t) may be obtained from various 

possible methods such as from the data of the calibrator source which 

mentioned above. 

y(t) = c(t) + e(t) + v(t) + n(t). (9.19) 

r(t) = y(t) - c(t) = e(t) + v(t) + n(t) (9.20) 
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PHASE ESTIMATION BY KALMAN FILTER 

The Kalman filter grew out of Wiener filter theory. The Wiener 

filter was developed to solve optimal estimation problems such as 

separating random processes whose spectra overlap. Classical frequency 

filters cannot solve this problem. A Wiener filter is basically a 

weighting function based on the Minimum-Mean-Squared-Error (MMSE) 

criterion. However, the Wiener filter solution does not lend itself 

very well to the discrete-data problem [Brown, 1983]. In 1960, R. E. 

Kalman provided a state-space method for formulating the MMSE filter 

[Kalman, 1960; Kalman and Bucy, 1961]. The two main features of the 

Kalman filter that are additional to the Wiener filter are 1) vector 

modeling of the random processes under consideration so that the 

multiprocess problem can be solved, and 2) recursive processing of the 

measurement data so that it can be used in real time and require little 

memory. 

If the parameters of the stochastic difference equations of random 

processes in equations (9.10) or (9.20) are known, it is straight 

forward to apply the Kalman filter to separate these processes. 

Rewriting (9.15) as 

*t = Vt-1 + wt. (9.21) 

the observation equation is 

y(t) = •*" n(t) (9.22) 
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where is a ((p+q) x 1) process state vector at time t, is a 

((p+q) X (p+q)) state transition matrix which is given in (9.16) (the 

coefficient matrix),is a ((p+q)xl) white driving vector, and H(t) = 

{h£; i=l,2,. .. ,p+q) in which h£=0 except for h]^=l and hp+]^(t)=l. The 

covariance matrix of Wj. is given by Q(t) = {Q£j(t); l<i<p+q, l<j<p+q} 

in which Q£j(t)=0 except for Qii(t)=o,^ and Q(p+i)(p+i)=o'a- "(t) is the 

2 
system white noise with a variance of a^. If v(t) is colored, the 

2 
measurement variance If v(t) is white, only the first p states 

are needed in equations (9.16) or (9.21), and then, R = variance of 

Let the estimated state vector of be x^jt' t-he Kalman filter 

estimates x^j^ by minimizing the major diagonal of the error covariance 

matrix 

where the elements along the major diagonal are the error variances of 

the states. As the solution of the minimization, the Kalman filter 

equations can be derived. They are: 

1. Predicting the state vector and the error covariance matrix 

v(t) + a^. 

Pt|t = E[(xt - =t|t) (!x!t " !x!t|t)^] (9.23) 

*t|t-l **t-l|t-l' 

Pt|t-1 = !*lt:P!t|t!*!^t + lQ!t 

(9.24) 

(9.25) 

2. Computing the Kalman gain vector 

Kt|t = Pt|t-lH^[H IHI? + R]-l. (9.26) 
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3. Estimating the state vector 

=t|t = *t|t-l + Kt|t[y(t) - !H (9.27) 

4. Evaluating the error covariance matrix 

Pt|t = [I - Ktit !P't|t-l- (9.28) 

The principal idea is given at step 3 where the estimate is obtained by 

a sum of a prediction and a correction factor. The correction factor 

is given by the modified residual where the modification factor depends 

on the Kalman gain. The error variance of estimation is given by P^j^. 

With a sequence of y(t) and all estimated parameters, given the initial 

values of Xi|o and Ipl^jQ, an estimated sequence be obtained 

by iteratively processing the above equations from step 1 to step 4 

from the first sample of y(t) to the last one. In our case, the 

estimated phase data are given by the first element of the vector x^jt" 

The phase closure concept may be used in phase estimation and only the 

independent phase sequences are filtered. 
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SOME EXPERIMENTAL RESULTS OF T-CALIBRATION 

The applicability of the T-calibration was tested with some 

simulations for correcting phase data. The data used are from VLA and 

Hat Creek Millimeter interferometer (here after Hat Creek array). 

A Simulation of Filtering Antenna Gains 

Antenna gains provide correction factors for observed data. One 

of first tests was to estimate accurate antenna gains. If the Kalman 

filter can provide accurate antenna gains, it is equivalent to giving 

good estimates of the phase. Moreover, the computational load of 

estimating antenna-based gains is less than that of estimating 

baseline-based visibility data. Also, the visibility data are expected 

to be unchanged. With this in mind, we did a simulation to correct the 

antenna gains by the T-calibration method. 

Figure 9.1 is a VLA map of the point source 1741-038. It was 

observed with a 6-cm wavelength on May 21, 1982 by R. A. Sramek for an 

atmospheric phase disturbance study. The rms values of phase 

fluctuation of twenty-four time series varied from 3° to 23°. The data 

were averaged over one-minute intervals for 207 minutes. The data were 

processed by the VLA conventional data processing programs. The peak 

flux density in Figure 9.1 is 0.4239 Jy/beam. Figure 9.1 is 

acknowledged as an original map for our simulation purpose. 
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Figure 9.1. The original map. The peak flux density is 0.4239 
Jy/beam. The contour levels are: 1.0E-04>'«(-10.0, -1.0, 
1.0, 2.0, 10.0, 40.0, 100.0, 200.0, 400.0, 800.0, 900.0) 

Figure 9.2. The phase noise added map from Figure 9.1. The peak flux 
density is 0.4085 Jy/beam. The contour levels are the 
same as Figure 9.1 
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The noise map was obtained by adding white noise to the gain file 

of sixteen series. The noise variance is 28.6° and the rms ratio of 

the original data and noise vary from 0.105 to 0.803. By completing 

the same data processing as for the original data, the map of the noisy 

data is obtained and is shown by Figure 9.2 where the peak flux density 

dropped to 0.4085 Jy/beam. This occurred because of the energy 

scattered due to phase error. With the noise variance such as 28.6°, 

the VLA data processing program did tremendously reduce the noise. 

However, the difference between the two maps can still be shown by the 

very low contour levels where the background noise has the same order 

as the low level structure of the original map. 

The modeling and Kalman filtering procedure in the case of known 

noise variance was used to estimate antenna gains. Given variances of a 

noise v(t) and system noise variance, the covariances of noise free 

phase sequence x(t) were estimated from (9.14). Accordingly, the AR(p) 

models of antenna gains described by equation (9.15), where the p is as 

high as 3, were obtained by solving the Yule Walker equation. Then, a 

bank of Kalman filters of (9.24) to (9.28) was applied to estimate 

gains with the system equations of (9.21) and (9.22). Each antenna 

gain sequence was estimated by an individual Kalman filter with a 

specific set of parameters. The rms of the noise remaining in the 

antenna gains range from 3° to 15°. The related rms ratios between the 

original data and the noise remaining were increased by a factors from 

3.6 to 6.2. By the same data processing programs used for the last two 
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maps, the map obtained after filtering the antenna gains is given by 

Figure 9.3. The peak flux was restored as 0.4234 which is very close 

to the original one and the low contour structure of Figure 9.1 and 

Figure 9.3 are remarkably similar. 

Figure 9.3. The filtered map from Figure 9.2. The peak flux density 
is 0.4234 Jy/beam. The contour levels are the same as 
Figure 9.1 

The T-calibration was tested for correcting the baseline-based 

phase data. The source map was chosen among the maps available to us. 

The source was a point source 3C48. The data were collected by R. A. 

Sramek for an atmospheric phase disturbance study in April 7, 1984 with 

the VLA in the C array and 2 cm wavelength. The observing atmospheric 

conditions were bad. The data record length was about 120 minutes and 

ff ! rT'C, .•>rxr , 

Correcting Baseline-Based Phase Data 
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the highest peak-to-peak fluctuation was more than 250°. Two thirds of 

the 351 correlator outputs had an noise rms above 24° and the worst 

case was 43°. Though the phase of this data set varied rapidly in 

time, the mean of the data sequence remained close to stationary. The 

original map obtained by the conventional data processing programs in 

VLA is shown in Figure 9.4 which has a dynamic range of 362. In this 

particular case, the atmospheric varies so rapidly that the phase noise 

has a high component of whiteness and the phase noise reduction can be 

significantly done by only removing the white component of the noise. 

The variance of the white component can be estimated from the ARMA 

analysis of the phase data. Consquently, the covariance of the non-

white component could be found. Therefore, the parameters of model 

(9.15) were estimated and a bank of Kalman filters was applied to 

correct the phase data. Then, the same data processing procedure for 

the original data was used for the filtered data. The map of the 

filtered data is given by Figure 9.5. The dynamic range was increased 

to 657 and the edges of the source is sharper than those in the 

original map. 
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Figure 9.4. The observed map of radio source 3c84. The peak flux 
density is 0.5602 Jy/beam. The contour levels are: -1.0, 
-0.5, -0.3, 0.3, 0.5, 1.0, 4.0, 8.0, 16.0, 32.0, 50.0, 
8 0 . 0 ,  1 0 0 . 0  

o 

Figure 9.5. The filtered map from Figure 9.4. The peak flux density 
is 0.6022 Jy/beam. The contour levels in % of the peak 
value are the same as in Figure 9.4 
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A Simulation of Filtering Phase Data Combining with the CLEAN 

T-calibration was tested by a simulation for parameter estimation 

using CLEAN components and noise covariances. The data were collected 

for a radio source by three antennas in the Hat Creek array. The 

observation time was ten hours with three antennas in an observing 

frequency of 91.71 GHz (3.27 mm). The integration time was 100 second. 

The data were calibrated before we used them. 

Figure 9.6 shows a CLEAN map made by the multi-channel mapping 

programs of Berkeley's radio astronomy laboratory. For simulation 

purposes, Figure 9,6 was acknowledged as an original map and any 

structure on the map was acknowledged as the original structure. A 

noisy map was obtained by adding noise on the original phase data and a 

restored map was obtained by reducing the phase noise. We want the 

restored map to be as close as possible to the original map. 

The range of intensities of Figure 9.6 is from -0.012 Jy/beam to 

0.112 Jy/beam and the ratio of peak to rms of background noise 

(hereafter DR) is about 116.5. In the frequency domain, there are 

three visibility data sequences because of three antennas used. The 

noise map was obtained by adding three computer generated AR(l) noise 

sequences to the phase data. The variances of noise range from 11° to 

18°. The noisy map is shown by Figure 9.7 where the range of 

intensities is from -0.021 Jy/beam to 0.099 Jy/beam and the DR is about 

77.8. The peak intensity dropped to 0.099 Jy/beam from 0.112 Jy/beam 

because of the phase noise. A procedure including parameter 
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estimations for phase models and phase correction in time order was 

used to restore the noisy map. 

01:09: Original map •20-I6-8-4-2 1248 16 326485 99 

Figure 9.6. The original map. The peak flux density is 112.5 mJy. 
The contour levels in % of the peak value are: -20, -16, 
-8, -4, -2, 1, 2, 4, 8, 16, 32, 64, 85, 99 

01.12: Noisy map '20*lS>6*4-2 I 2 4 8 16 32 64 65 99 

Figure 9.7. The phase noise added map from Figure 9.6. The peak flux 
density is 93.5 mJy. The contour levels in % of the peak 
value are the same as in the Figure 9.6 
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OI:!Sl Model VU, •20-l6-8-<-î I 2 4 8 IE 32 64 65 99 

Figure 9.8. The map made with the first fifteen CLEAN components. The 
peak flux density is 127.2 mJy. The contour levels in % 
of the peak value are the same as in the Figure 9.6 

This method uses the information provided by the CLEAN method and the 

empirical calibration method. The first fifteen CLEAN components of 

the noisy map (Figure 9.7) are positive. A map of them, shown in the 

Figure 9.8, has an intensity range from -0.004 Jy/beam to 0.127 Jy/beam 

with a DR is of 164. Since we specified that Figure 9.6 was the 

original map, we see that both Figure 9.7 and Figure 9.8 are severely 

distorted. The first fifteen positive CLEAN components of the noise 

map were used to find c(t) of equation (9.18). Then, equation (9.20) 

was formed and its covariances were estimated from r(t). Given 

covariances of noise, the covariance of s(t) could be readily found. 

AR(1) models were used to model e(t), 

i(t) = ê(t-l) + k u(t) (9.29) 
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where ê(t) is an estimate of e(t), and u(t) is an iid(0,l). 0^ was 

given by 

01 = CgCl) / CgCO) (9.30) 

and K was found by 

= Ce(0) / ( 1 - *i). (9.31) 

Consequently, AR(1) models for both e(t) and v(t) were estimated by 

equations (9.30) and (9.31). For antenna pair 1-2, 

v(t) = 0.80v(t-l) + 0.31u(t) 

S(t) = 0.17e(t-l) + 0.66u(t) 

For antenna pair 2-3, 

v(t) = 0.81v(t-l) + 0.33u(t) 

ê(t) = 0.24ê(t-l) + 0.43u(t) 

For antenna pair 3-1, 

v(t) = 0.69v(t-l) + 0.32u(t) 

i(t) = 0.30i(t-l) + 0.43u(t) 

where v(t) is an estimate of v(t). Each pair of v(t) and e(t) was 

written in the state space form of (9.16), and then, three Kalman 

filters given by (9.24) to (9.28) were applied to the noisy phase data 

to estimate e(t)s. Then the estimated phase data were obtained by 

s(t) = c(t) + i(t) (9.38) 

(9.32) 

(9.33). 

(9.34) 

(9.35) 

(9.36) 

(9.37) 
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The map restored by the filter is given by Figure 9.9. 

• • • • • •  

1 % 
: : 

© 
Rtltorad Mao •20-IB-e*4*2 1 2 4 8 16 32 64 65 9B 

Figure 9.9. The restored map from Figure 9.7. The peak flux density 
is 115.4 mJy. The contour levels in % of the peak value 
are the same as in the Figure 9.6 

The noise variances actually used were smaller than the measured 

values of v(t) by an amount of 50%. The range of intensities in the 

restored map are from -0.012 Jy/beam to 0.115 Jy/beam, and the DR is 

about 125. All these statistical values of the restored map are closer 

to the original one than the noisy one. Since we specified Figure 9.6 

as an original map, the restored map given by Figure 9.9 was expected 

to be as close as possible to the Figure 9.6. Comparing the noisy map 

(Figure 9.7), the CLEAN component map (Figure 9.8), and the restored 

map (Figure 9.9) to the original map (Figure 9.6), the restored one is 

closest to the original map. Again, the algorithm worked well. 
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SUMMARY 

A new technique has been developed for correcting the phase error 

caused by atmospheric disturbances for long-baseline interferometer 

arrays. The simulations were done for correcting antenna-based gains 

and for correcting baseline-based phase data. 

The atmospheric induced phase fluctuation was found to be 

autocorrelated in time. This provided the fundamental grounds for 

modeling and filtering the phase data in time. This technique used 

time series AR modeling theory to obtain the phase models for both 

noise and noise free phase processes. Time series information from 

other radio astronomy data processing methods, such as calibration and 

CLEAN, was used for the model's parameter estimation. For simplicity, 

AR(p) models, where p < 3, were used for both the signal and noise 

models. A simple but practical parameter estimation procedure, such as 

solving the Yule-Walker equation, was used to find parameters of AR 

models. 

Given AR models of both noisy and noise free phase processes, the 

Kalman filter is was employed to optimally separate these random 

processes. The Kalman filter was used because it could separate the 

random processes whose spectra overlapped in a situation where only 

part of the statistic information was available. Moreover, the Kalman 

filter provided a measure of the goodness of the estimation which is 

not available in other radio astronomy phase data correcting 

algorithms. 
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The weakness of this T-calibration is that some a prior 

statistical information about the random processes under consideration 

should be known or measured. 

The a priori knowledge required of this technique are 

autocovariances of the processes of interest. They can be partly 

provided by empirical calibration and CLEAN components. The CLEAN 

components provide global structure information of a source but they 

introduce non-ignorable phase error also. Hence, using the CLEAN 

components as a signal model in the calibration is not mathematically 

perfect so a correction term should be added to the signal model. 

Therefore, we proposed a mathematical model which combined the model of 

the CLEAN components and a correction term estimated from the residual 

sequence of the phase difference between observed data and data from 

CLEAN components. In this model, no approximation was made. The 

problem is, can we obtain the correct term from the residual sequence? 

At this moment, in our T-calibration technique, time series modeling 

and Kalman .filtering is used to estimate the correction term. This 

estimation is an approximation. However, the sum of the data from the 

CLEAN components and from the estimated correction term provides a 

better signal model than that from the CLEAN components alone. 

T-calibration should be further developed and tested. There are a 

few places where this technique needs to be improved. A more careful 

and automatic variance estimation algorithm should be developed so that 

the estimation procedure always provides stable and reasonable 
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solutions. Another problem is that a more complete and robotic model 

identification procedure needed to be developed. In this future 

modeling procedure, parsimonious models with proper ARMA forms and 

orders can be estimated for each random process under consideration. 

Another future development of T-calibration is to develope a new 

calibration scheme that combines the T-calibration and self-calibration 

so that the data estimated from the T-calibration provides source 

models for self-calibration. This scheme may be necessary to properly 

maintain the closure relation which may be violated by time series 

filtering, or is not optimally maintaind during the filtering. 

Other future work of interest is to develop a phase estimation 

scheme where incorporating microwave water-vapor radiometer data into 

the Kalman filter for estimating and correcting atmospheric phase 

disturbance. 



www.manaraa.com

243 

ACKNOWLEDGMENTS 

This project was partially funded by National Science Foundation 

Grant no. AST-8217135. We thank R. A. Sramek, T. J. Cornwell, and R. 

D. Ekers of VLA for helpful discussion throughout this project. We 

thank Dr. Sramek for sharing VLA phase data. We thank C. H, Wright 

and W. J. Welch for providing Hat Creek interferometer data and multi­

channel mapping programs. We thank Wright for providing help for 

installing and modifying the multi-channel mapping programs. We thank 

the National Radio Astronomy Observatory for providing initial 

financial support for the project and for providing continued service 

support. 



www.manaraa.com

244 

REFERENCES 

Abraham, B., and J. Ledolter. 1983. Statistical Methods for 
Forecasting. John Wiley & Sons, New York. 

Armstrong, J. W., and R. A. Sramek. 1982. Observations of 
tropospheric phase scintillations at 5 GHz on vertical paths. Radio 
Science 17:1579-1586. 

Basart, J. P., and Y. Zheng. 1986. Modeling very large array phase 
data by the Box-Jenkins method. Radio Science 21:863-881. 

Baars, J. W. M. 1967. Meteorological influences on radio 
interferometer phase fluctuations. IEEE Trans. Antennas Propagation 
AP-15:582-584. 

Basart, J. P., G. K. Miley, and B. G. Clark. 1970. Phase measurements 
with an interferometer baseline of 11.3 km. IEEE Trans. Antennas 
and Propagation AP-18(3):375-379. 

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: 
forecasting and control. 2nd ed. Holden-Day, San Francisco, CA. 

Brown, R. G. 1983. Introduction to random signal analysis and Kalman 
filtering. John Wiley & Sons, New York. 

Clark, B. G. 1980. An efficient implementation of the algorithm 
"CLEAN,". Astron. Astrophys. 89:377-378. 

Cornwell, T. J. 1983. A method of stabilizing the clean algorithm. 
Astron. Astrophys. 121:281-285. 

Dravskikh, A. F., and A. M. Finkelstein. 1979. Tropospheric 
limitations in phase and frequency coordinate measurements in 
astronomy. Astrophys. and Space Sci. 60:251-265. 

Fuller, W. A. 1976. Introduction to Statistical Time Series. John 
Wiley and Sons, New York. 

Graupe, D. 1984. Time series analysis, identification and adaptive 
filtering. Robert E. Krieger Publishing Company, Malabar, Florida. 

Hamaker, J. P. 1978. Atmospheric delay fluctuations with scale sizes 
greater than one kilometer, observed with a radio interferometer 
array. Radio Sci. 13:873-891. 

Han, W. J. 1980. Effects of atmosphere irregularities on radio 
interferometer measurements. Chinese Astronomy 4:174-184. 



www.manaraa.com

245 

Margrave, P. J., and L. J. Shaw. 1978. Large-scale tropospheric 
irregularities and their effect on radio astronomical seeing. Mon. 
Notic. Royal Astron. Soc. 182:233-239. 

Hinder, R. A. 1970. Observations of atmospheric turbulence with a 
radio telescope at 5 GHz. Nature 225:229-253. 

Hinder, R., and M. Ryle. 1971. Atmospheric limitations to the angular 
resolution of aperture synthesis radio telescopes. Mon. Notic. 
Royal Astron. Soc. 154:229-253. 

Hogbom, J. A. 1974. Aperture synthesis with a non-regular 
distribution of interferometer baselines. Astron. Astrophys. Suppl. 
15:417-426. 

Hogbom, J. A. 1984. CLEAN as a pattern recognition procedure. Pages 
247-254 jji J. A. Roberts, ed. Indirect Imaging. Cambridge 
University Press, Cambridge, NY. 

Ishimaru, A. 1978. Wave propagation and scattering in random media. 
Vol. 2. Academic, Orlando, Fla. 

Jayant, N. S., and P. Noll. 1984. Digital coding of waveforms: 
principles and applications to speech and video. Prentice-Hall, 
Englewood Cliffs, New Jersey. 

Jennison, R. C. 1958. A phase sensitive interferometer technique for 
the measurement of the Fourier transforms of spatial brightness 
distributions of small angular extent. Mon. Notic. Royal, Astron. 
Soc. 118:276-284. 

Kalman, R. E. 1960. A new approach to linear filter and prediction 
problems. Trans, ASME 82:35-45. 

Kalman, R, E., and R. S. Bucy. 1961. New results in linear filtering 
and prediction. J. Math, Phys. 25:261-278. 

Levinson, N. 1947. The Wiener rms (root mean square) error criterion 
in filter design and prediction. J. Math. Phys. 25:261-278. 

Mathur, N. C., M. D. Grossi, and M. R. Pearlman. 1970. Atmospheric 
effects in very long baseline interferometry. Radio Sci. 
5:1253-1261. 

Moran, J. M., and B. R. Rosen. 1981. Estimation of the propagation 
delay through the troposphere from microwave radiometer data. Radio 
Sci. 16:235-244. 

Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models. 
John Wiley, New York, NY. 



www.manaraa.com

246 

Readhead, A. C. S., and P. N. Wilkinson. 1978. The mapping of compact 
radio sources from VLSI data. Astrophys. J. 223:25-36. 

Resch, G. M., D. E. Hogg, and P. J. Napier. 1984. Radiometric 
correction of atmospheric path length fluctuations in 
interferometric experiments. Radio Sci. 19:411-422. 

Schwab, F. R. 1980. Adaptive calibration of radio interferometer 
data. Proc. Soc. Photogr. Optic. Instrum. Eng. 231:18-25. 

Schwarz, U. J. 1978. Mathematical-statistical description of the 
iterative beam removing technique (Method CLEAN). Astron. 
Astrophys. 65:345-356. 

Tatarskii, V. I. 1961. Wave propagation in a turbulent medium. Part 
I. McGraw-Hill, New York, NY. 

Tatarskii, V, I. 1971. The effects of the turbulent atmosphere on 
wave propagation. U.S. Dept. of Commerce, National Technical 
Information Service, Sprinfield, Va. 

Treuhaft, R. N., and G. E. Lanyi. 1987. The effect of the dynamic wet 
troposphere on radio interferometer measurements. Radio Sci. 2: 
251-265. 

Wesseling, K. H., J. P. Basart, and J. L. Nance. 1974. Simultaneous 
interferometer phase and water vapor measurements. Radio Sci. 
9:349-353. 

Zheng, Y. 1985. Modeling VLA phase data and improving the synthesized 
image with univariate Box-Jenkins models and Kalman filters. M.S. 
Thesis. Iowa State University, Ames, Iowa. 



www.manaraa.com

247 

GENERAL SUMMARY 

Various techniques have been developed and applied to data and 

image processing in radio astronomy and nondestructive evaluation. The 

subjects of these techniques are: statistical analysis, ARMA modeling, 

stochastic filtering, deconvolution, and feature extraction. The 

general objective of developing and applying these techniques is to 

improve the quality of data and images of radio astronomy and 

nondestructive evaluation. 

A model based filtering scheme has been developed to enhance the 

industrial NDE X-ray radiographs and radio astronomy radio source maps 

(Part III, Part V, and Part VIII). This scheme includes AR modeling 

and Kalman filtering processes. Knowledge about noise of an image can 

be obtained from either the image forming mechanism or a flat region of 

the image. Therefore, the covariances of both signal and noise can be 

estimated with the given system equation and noisy measurements. 

Consequently, AR descriptions about signal and noise can be obtained 

and the Kalman filter can be used to separate the signal and noise 

processes. This filter scheme will not destroy the details of an image 

and the background contents as other smoothing filters will. 

A fast and effective maximum entropy deconvolution method has been 

developed to reconstruct industrial NDE X-ray and IR images (Part VIl). 

The MEM image is obtained by maximizing the entropy of a reconstructed 

2 
image constrained by the x statistic. A Newton-Raphson iteration 

method is used to find an extremum of the entropy subject to the 
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condition enforced by Lagrange multipliers. This MEM has been shown 

that it gives smooth NDE images with shape edges. 

Some other image enhancement techniques have been applied to 

improve NDE images (Part II). They are: the sigma filter, median 

filter, adaptive smooth filter, trend removal, and histogram 

equalization. 

Some image feature extraction methods have been developed to 

detect features of NDE images (Part II, Part IV). They are: the 

modified masking function, thresholding, and low-level image 

segmentation. These methods have been used to detect flaws of 

industrial NDE X-ray radiographs. 

A rule-based expert system was discussed to automate the image 

segmentation, modeling, and Kalman filter processes (Part IV). A set 

of knowledge rules and a set of control rules were used to monitor and 

control the entire image enhancement procedure without human 

interaction. It is useful for industrial applications. 

A new technique has been developed for phase data correction of a 

synthetic aperture antenna array or an interferometer (Part I and Part 

IX). Atmospheric-induced phase disturbance has been found to be 

correlated in time which can be used to obtain ARMA descriptions of the 

phase data. Given a proper system model which describes the 

observations, consisting of signal (radio source information) and noise 

(atmospheric-induced phase error), we can find an ARMA signal model and 

an ARMA noise model, respectively. This is done by first estimating 
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covariances of the signal process and covariances of the noise process 

using the given observations. The Kalman filter, incorporating the 

CLEAN algorithm, is used to correct the phase data. Mathematically, 

this method is more advanced than the self-calibration method since the 

CLEAN components are not perfect for the signal model. Furthermore, 

since this method corrects data in time, it can apply to an 

interferometer while self-calibration can not do so. By combining this 

method with self-calibration, a new calibration method can be readily 

obtained. 
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